International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 ©IJCDM Volume 8, 2023, pp.1-8 Received September 3, 2022. Published on-line May 8, 2023 web: http://www.journal-1.eu/ ©The Author(s) This article is published with open access¹.

Some new Archimedean circles in an Arberlos

NGUYEN NGOC GIANG^a, LE VIET AN^b AND NGUYEN DUY PHUOC^c ^aHo Chi Minh University of Banking,
36 Ton That Dam street, district 1, Ho Chi Minh City, Vietnam e-mail: nguyenngocgiang.net@gmail.com
^bPhu Vang, Thua Thien Hue, Vietnam e-mail: levietan.spt@gmail.com
^c214 Phan Boi Chau street, Thua Thien Hue, Vietnam e-mail: nguyenduyphuocqh@gmail.com

Abstract. This article will refer to some new Archimedean 's circles in an arbelos.

Keywords. shoemaker's knife, arbelos, Archimedean circle.

1. INTRODUCTION

Given a segment AB with an interior point C. A shoemaker's knife (or arbelos) is the region obtained by cutting out from a semicircle (O) with diameter AB and the two smaller semicircles (O_1) and (O_2) with diameters AC and CB respectively. The common tangent at C of the smaller semicircles intersect the large semicircle at D, and let (O') is the Midway semicircle with diameter O_1O_2 , and the points P, P_1 and P_2 are the midpoints of the semicircles $(O), (O_1)$ and (O_2) respectively, all on the same side AB. Let AC = 2a, CB = 2b. The following remarkable theorem is due to Archimedes.

Theorem 1.1. (Archimedes, [1]). The two circles each tangent to CD, the large semicircle and one of the smaller semicircles have equal radius $\frac{ab}{a+b}$.

Circles with radius $t := \frac{ab}{a+b}$ are called Archimedean. They are congruent to the Archimedean twin circles.

2. Preliminaries

Theorem 2.1. Let A' and B' be the reflections of A and B through B and A respectively. Then two circles each tangent to the ray CD, the large semicircle (O) and one of the circles (A'C) and (B'C) are Archimedean.

¹This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

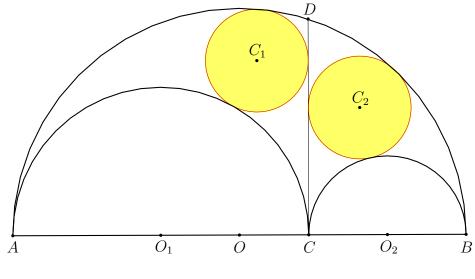
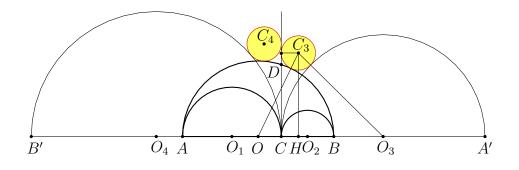


FIGURE 1



Proof. (see Figure 2). Let (C_3) , (C_4) are two circles each tangent to the ray CD, the large semicircle (O), with (C_3) tangent to (A'C) and (C_4) tangent to (B'C). Let r_3 is radius of circle (C_3) ; O_3 is center of (A'C). Draw C_3O and C_3O_3 , and drop perpendiculars from C_3 to line CD and point H to AB. We easily see that

$$C_3O = a + b + r_3, O_3C = a + 2b, C_3O_3 = a + 2b + r_3,$$

 $OH = a - b + r_3, \text{ and } O_3H = a + 2b - r_3.$

From right triangles O_3C_3H and OC_3H we get that

$$C_3H^2 = (a+b+r_3)^2 - (a-b+r_3)^2 = (a+2b+r_3)^2 - (a+2b-r_3)^2,$$

which reduces to

$$2b(2a + 2r_3) = 2r_3(2a + 4b)$$
 and hence $r_3 = \frac{ab}{a+b} = t$

7

This means that (C_3) is Archimedean.

A similar argument show that (C_4) is Archimedean.

Theorem 2.2. The circle (PO_i) , (i = 1, 2) meets (O) at two points P and Q_i . Then circle tangent to large semicircle (O), the segments PO_i and O_iQ_i is Archimedean.

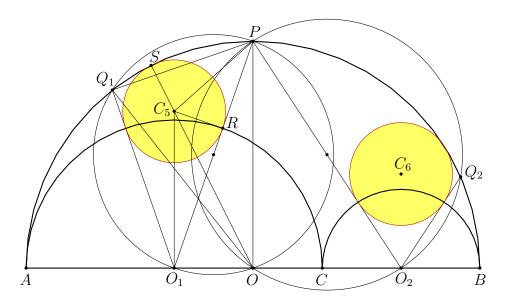


FIGURE 3

Proof. (see Figure 3). Let the circle (C_5) has radius r_5 tangent (O) at S, the segment PO_1 at R and the segment O_1Q_1 . We have $OO_1 = |AO - AO_1| = |(a + b) - a| = b$.

Since POO_1Q_1 is the cyclic quadrilateral, we have

 $\angle OO_1P = \angle OQ_1P = \angle OPQ_1 = \angle AO_1Q_1.$

It follows that AO is the exterior angle bisector of $\angle PO_1Q_1$. Note that O_1C_5 is the interior angle bisector of $\angle PO_1Q_1$. Hence, O_1C_5 is perpendicular to AO. Thus, the right triangles O_1C_5R and PO_1O are similar,

$$\frac{O_1R}{C_5R} = \frac{PO}{O_1O} \Longrightarrow O_1R = C_5R\frac{PO}{O_1O} = r_5\frac{a+b}{b} = \frac{r_5(a+b)}{b}.$$

On the other hand, by (C_5) and (O) are internal tangent circles, C_5 belongs to the segment OS. It follows that $OC_5 = OS - C_5S = (a + b) - r_5$. By the Pythagoras's theorem,

$$O_1 R^2 = O_1 C_5^2 - C_5 R^2 = O_1 C_5^2 - r_5^2 = O C_5^2 - O O_1^2 - r_5^2$$

= $[(a+b) - r_5]^2 - b^2 - r_5^2 = (a+b)^2 - 2r_5(a+b) - b^2.$

We deduce that,

$$\left(\frac{r_5(a+b)}{b}\right)^2 = (a+b)^2 - 2r_5(a+b) - b^2$$
$$\implies r_5^2 \frac{(a+b)^2}{b^2} + 2r_5(a+b) + [b^2 - (a+b)^2] = 0$$

This implies $r_5 = \frac{ab}{a+b} = t$, and (C_5) is Archimedean circle; similarly for the circle (C_6) tangent to semicircle (O) and two segments PO_2 and O_2Q_2 .

Remark. The circle (C_5) (reps. (C_6)) is orthogonal to (O_1) (reps. (O_2)).

Indeed, since $O_1R = r_5 \frac{a+b}{b} = \frac{ab}{a+b} \frac{a+b}{b} = a$, we get R belongs to (O_1) , and (C_5) is orthogonal to (O_1) ; similarly for (O_2) and (C_6) .

Theorem 2.3. Draw the circles $O_1(O_2)$ and $O_2(O_1)$ meet the semi-circle (O) at T_1 and T_2 , respectively. The segments T_1A, T_1O_1 meet the semi-circle (O_1) at C_7 and C_9 , respectively; the segments T_2B, T_2O_2 meet the semi-circle (O_2) at C_8 and C_{10} , respectively. Then

(a) The cirles $C_7(C_9)$, $C_9(C_7)$, $C_8(C_{10})$, $C_{10}(C_8)$ are Archimedean.

(b) The circles, whose centers lie on the semi-circle (O), are tangent to (O_1) at

 C_7 , (O_2) at C_8 are Archimedean, respectively.

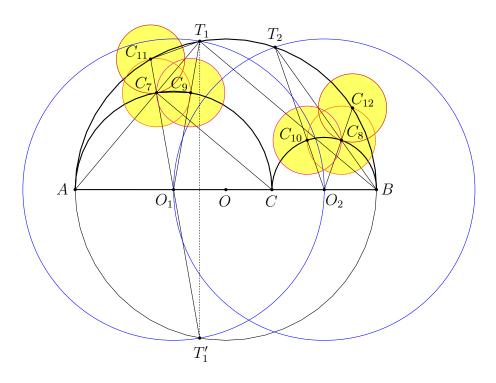


FIGURE 4

Proof. (see Figure 4). Since CC_7 and BT_1 are both perpendicular to AT_1 , they are parallel.

By Thales's theorem,

$$\frac{AC_7}{AT_1} = \frac{AC}{AB} = \frac{2a}{2(a+b)} = \frac{a}{a+b} = \frac{O_1C_9}{O_1T_1}.$$

Again, by Thales's theorem, C_7C_9 is parallel to AO_1 .

Since $T_1C_9 = T_1O_1 - O_1C_9 = (a+b) - a = b$, and the triangles $T_1C_7C_9$ and T_1AO_1 are similar,

$$\frac{C_7 C_9}{AO_1} = \frac{T_1 C_9}{T_1 O_1} \Longrightarrow C_7 C_9 = AO_1 \frac{T_1 C_9}{T_1 O_1} = a \frac{b}{a+b} = \frac{ab}{a+b} = t.$$

This proves that the circle $C_7(C_9)$ and $C_9(C_7)$ are Archimedean circles; similarly for $C_8(C_{10})$ and $C_{10}(C_8)$. Part (a) is proved.

Let T'_1 is the reflection point of T_1 through line AB; O_1C_7 and O_2C_8 meet semicircle (O) at C_{11} and C_{12} , respectively. We have $C_{11}(C_7)$ tangent to (O_1) at C_7 , and $C_{12}(C_8)$ tangent to (O_2) at C_8 .

By part (a), C_7C_9 is parallel to AB. It follows AB is the exterior angle bisector of $\angle T_1O_1C_{11}$. By symmetry, T'_1 belongs to both the line $C_{11}O_1$ and the circle (O). Chassing angles,

$$\angle C_{11}C_7T_1 = \angle O_1C_7A = \angle O_1AC_7 = \angle C_9C_7T_1,$$

and

$$\angle T_1 C_{11} C_7 = \angle T_1 C_{11} T_1' = \angle T_1 A T_1' = 2 \angle T_1 A O_1$$

= 2\angle T_1 C_7 C_9 = \angle C_{11} C_7 C_9 = \angle T_1 C_9 C_7.

This means that the triangles $T_1C_{11}C_7$ and $T_1C_9C_7$ are congruent. By part (a), $C_{11}C_7 = C_9C_7 = t$. This proves that $C_{11}(C_7)$ is Archimedean circle; similarly for $C_{12}(C_8)$.

Theorem 2.4. Draw the circles $A(O_1)$ and $B(O_2)$ meeting the semi-circle (O) at C_{13} and C_{14} , respectively. AC_{13} meets the semi-circle (O₁) at C_{15} , and BC_{14} meets the semi-circle (O₂) at C_{16} . Then the circles $C_{13}(C_{15})$, $C_{15}(C_{13})$, $C_{14}(C_{16})$ and $C_{16}(C_{14})$ are Archimedean.

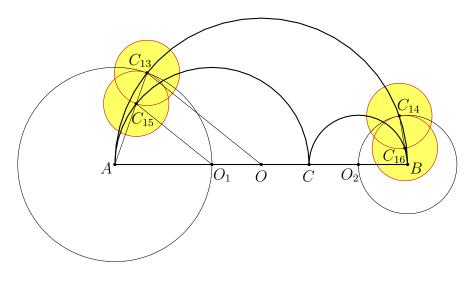


FIGURE 5

Proof. (see Figure 5). Connecting OC_{13} and O_1C_{15} . Since two circles (O) and (O_1) are tangent at A, the homothety $\mathcal{H}_A^{\frac{a}{a+b}}$ center A, ratio $\frac{a}{a+b}$ transforms (O) into (O_1) . And by the homothety $\mathcal{H}_A^{\frac{a}{a+b}}$ then C_{13} goes into C_{15} . Hence

$$AC_{15} = \frac{a}{a+b}AC_{13} = \frac{a}{a+b}a = \frac{a^2}{a+b}$$

It follows

$$C_{13}C_{15} = AC_{13} - AC_{15} = a - \frac{a^2}{a+b} = \frac{ab}{a+b} = t.$$

This thing proves that the circles $C_{13}(C_{15})$ and $C_{15}(C_{13})$ are Archimedean; similarly to the circles $C_{14}(C_{16})$ and $C_{16}(C_{14})$.

Theorem 2.5. The line AD meets (O_1) at D_1 , and BD meets (O_2) at D_2 . Let C_{17} and C_{18} be points symmetric to O_1 and O_2 with respect to A and B. DC_{17} and DC_{18} meet the semi-circle (O) at R_1 and R_2 , respectively. AR_1 meets (O_1) at S_1 , and BR_2 meets (O_2) at S_2 . D_1S_1 and D_2S_2 meet AB at C_{19} and C_{20} , respectively. Then the circles $C_{17}(C_{19})$, $C_{19}(C_{17})$, $C_{18}(C_{20})$ and $C_{20}(C_{18})$ are Archimedean.

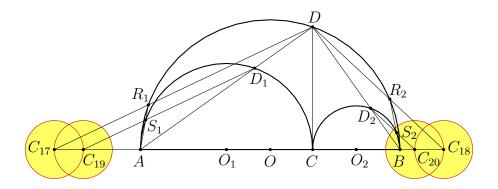


FIGURE 6

Proof. (see Figure 6). It is easy to have that under the homothety $\mathcal{H}_A^{\frac{a}{a+b}}$, the points D, R_1, C_{17} go into the points D_1, R_1, C_{19} , respectively. It follows

$$AC_{19} = \frac{a}{a+b}AC_{17} = \frac{a}{a+b}a = \frac{a^2}{a+b}$$

Note that $AC_{17} = AO_1 = a$. Hence

$$C_{17}C_{19} = AC_{17} - AC_{19} = a - \frac{a^2}{a+b} = t.$$

This thing means that $C_{17}(C_{19})$ and $C_{19}(C_{17})$ are Archimedean; similarly to $C_{18}(C_{20})$ and $C_{20}(C_{18})$.

Theorem 2.6. Line AD meets (O_1) at D_1 , and BD meets (O_2) at D_2 . Let E_1 and E_2 be the points symmetric to C with respect to A and B, respectively. DE_1 and DE_2 meet the semi-circle (O) at F_1 and F_2 . AF_1 meets the semi-circle (O_1) at G_1 , and BF_2 meets the semi-circle (O_2) at G_2 . D_1G_1 and D_2G_2 meet AB at H_1 and H_2 , respectively. Then the circles (E_1H_1) and (E_2H_2) are Archimedean.

Proof. (see Figure 7). It is easy to see that under the homothety $\mathcal{H}_{A}^{\frac{a}{a+b}}$, the points D, E_1, F_1 go into the points D_1, H_1, G_1 , respectively. Note that $AE_1 = 2a$, it follows

റ

$$AH_1 = \frac{a}{a+b}AE_1 = \frac{a}{a+b}2a = \frac{2a^2}{a+b}$$

Hence

$$E_1H_1 = AE_1 - AH_1 = 2a - \frac{2a^2}{a+b} = \frac{2ab}{a+b} = 2t$$

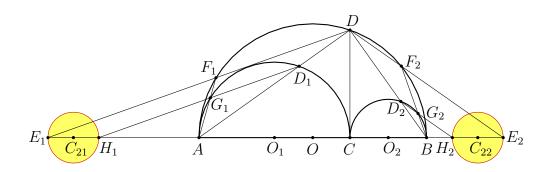
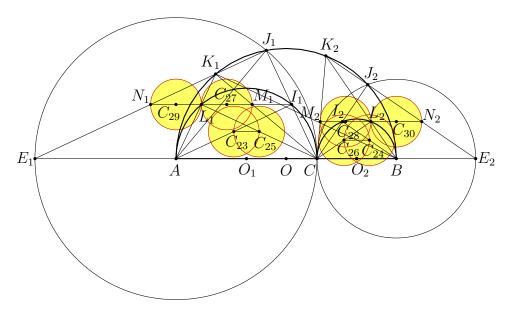


FIGURE 7

This thing means that the circle (E_1H_1) with center C_{21} is Archimedean. Similarly, the circle (E_2H_2) with center C_{22} is also Archimedean.

Theorem 2.7. Draw the circles A(C) and B(C) meeting the semi-circle (O) at J_1 and J_2 . AB meets again A(C) and B(C) at E_1 and E_2 , respectively. CJ_1 meets (O_1) at I_1 , and CJ_2 meets (O_2) at I_2 . E_1J_1 and E_2J_2 meet (O) at K_1 and K_2 , respectively. AK_1 meets (O_1) at L_1 , and BK_2 meets (O_2) at L_2 . I_1L_1 meets K_1C and K_1E_1 at M_1 and N_1 , respectively, and I_2L_2 meets K_2C and K_2E_2 at M_2 and N_2 , respectively. Let $C_{23}, C_{24}, C_{25}, C_{26}$ be the midpoints of I_1A , I_2B , CL_1 , CL_2 . Then the circles $C_{23}(C_{25})$, $C_{25}(C_{23})$, $C_{24}(C_{26})$, $C_{26}(C_{24})$, (M_1L_1) , (N_1L_1) , (M_2L_2) , (N_2L_2) are Archimedean.



Proof. (see Figure 8). Let $C_{27}, C_{28}, C_{29}, C_{30}$ be the centers of circles $(M_1L_1), (M_2L_2), (N_1L_1), (N_2L_2)$.

Connecting AJ_1 and BK_1 . Since BK_1 and CL_1 are perpendicular to AK_1 , they are parallel; and since AI_1 and E_1J_1 are perpendicular to CJ_1 , they are parallel. Note that the quadrilateral ABJ_1K_1 is concyclic and triangle AJ_1E_1 is isosceles at A. Hence

$$\angle ACL_1 = \angle ABK_1 = \angle AJ_1K_1 = \angle AJ_1E_1 = \angle AE_1J_1 = \angle CAI_1.$$

This thing proves that ACI_1L_1 is an isosceles trapezoid and I_1L_1 is parallel to AC.

Since CL_1 is parallel to BK_1 , applying the Thales's theorem, we have

$$\frac{AL_1}{AK_1} = \frac{AC}{AB} = \frac{a}{a+b} \Longrightarrow \frac{K_1L_1}{K_1A} = \frac{b}{a+b}$$

Since M_1N_1 is parallel to AC, applying the Thales's theorem, we have

$$\frac{M_1L_1}{AC} = \frac{L_1N_1}{AE_1} = \frac{K_1L_1}{K_1A} = \frac{b}{a+b}.$$

Since $AC = AE_1 = 2a$, it follows $M_1L_1 = N_1L_1 = \frac{b}{a+b}2a = 2t$. This thing means that the circles (M_1L_1) and (N_1L_1) are Archimedean; similarly, the circles (M_2L_2) and (N_2L_2) are also Archimedean.

On the other hand, we have

$$I_1L_1 = N_1I_1 - N_1L_1 = AC - 2t = 2a - \frac{2ab}{a+b} = \frac{2a^2}{a+b}.$$

Hence

$$C_{23}C_{25} = \frac{AC - I_1L_1}{2} = \frac{2a - \frac{2a^2}{a+b}}{2} = \frac{ab}{a+b} = t.$$

This thing proves that $C_{23}(C_{25})$ and $C_{25}(C_{23})$ are Archimedean; similarly $C_{24}(C_{26})$ and $C_{26}(C_{24})$ are also Archimedean.

References

- [1] T. L. Heath, The Works of Archimedes, 1912, Dover reprint.
- [2] C. W. Dodge, T. Schoch, P. Y. Woo and P. Yiu, Those ubiquitous Archimedean circles, Math. Mag., 72 (1999) 202–213.
- [3] F. M. van Lamoen, Online catalogue of Archimedean circles, available at http://home.kpn.nl/lamoen/wiskunde/Arbelos/Catalogue.htm.
- [4] F. M. van Lamoen, Archimedean adventures, Forum Geome., 6 (2006) 79-96.
- [5] H. Okumura and M. Watanabe, Remarks on Woo's Archimedean circles, Forum Geome., 7 (2007) 125-128.
- [6] T. O. Dao, Two pairs of Archimedean circles in the arbelos, Forum Geom., 14 (2014) 201–202.
- [7] Emmanuel Antonio Jose Garcia, Another Archimedean circle in an arbelos, Forum Geom., 15 (2015) 127-128.