A Note on the Area of Triangles

Emmanuel A. J. García ${ }^{a}{ }^{2}$
${ }^{a}$ CIDIC-UTE,
C. Camila Henríquez Ureña 20, Santo Domingo, Dominican Republic
e-mail: emmanuelgeogarcia@gmail.com

Abstract

We show that the sum of the areas of two triangles obtained by reflection equals the area of the reference triangle.

Keywords. area, reflection, homothetic triangles, Euclidean geometry.
Mathematics Subject Classification (2010). 51-04, 68T01, 68 T 99.

1. Introduction

On the web we can find several interesting problems associated with areas of triangles $[1,2,3]$. Theorem 1.1 is a generalization conjectured by Van Khea of a problem proposed by the author [4]. In this note we give a proof of Van Khea's generalization.
We will be using standard notation: $|B C|=a,|A C|=b,|A B|=c ; \angle B A C=\alpha$, $\angle A B C=\beta$ and $\angle B C A=\gamma$. If X, Y and Z are the vertices of a triangle, we denote its area $[X Y Z]$.

Theorem 1.1 (Van Khea). Let $A B C$ be a triangle and P any point on the plane of $A B C$. Let X, Y and Z be arbitrary points on sides $B C, A C$ and $A B$, respectively. Let D be the reflection of P around X. Similarly, define E and F. Denote U, V and W the midpoints of sides $B C, A C$ and $A B$, respectively. Let D^{\prime} be the reflection of D around U. Similarly, define E^{\prime} and F^{\prime}. Then

$$
[D E F]+\left[D^{\prime} E^{\prime} F^{\prime}\right]=[A B C] .
$$

See figure 1 for an example of the situation described in Theorem 1.1.

[^0]Proof. Denote $A Z=g, B Z=h, B X=j, C X=k, C Y=l$ and $A Y=m$. The area of triangle $X Y Z$ can be expressed as follows

$$
[X Y Z]=\frac{1}{2} b c \sin \alpha-\frac{1}{2} g m \sin \alpha-\frac{1}{2} h j \sin \beta-\frac{1}{2} k l \sin \gamma .
$$

Since triangles $X Y Z$ and $D E F$ are homothetic with scale factor 2 , it follows that

Figure 1. $[D E F]+\left[D^{\prime} E^{\prime} F^{\prime}\right]=[A B C]$.
$[D E F]=4[X Y Z]$. Thus, we have

$$
\begin{equation*}
[D E F]=2 b c \sin \alpha-2 g m \sin \alpha-2 h j \sin \beta-2 k l \sin \gamma \tag{1}
\end{equation*}
$$

Dividing both sides of (1) by $[A B C]$ we have

$$
\begin{equation*}
\frac{[D E F]}{[A B C]}=4\left[1-\left(\frac{g m}{b c}+\frac{h j}{c a}+\frac{k l}{a b}\right)\right] . \tag{2}
\end{equation*}
$$

Segments $U X$ and $P D^{\prime}$ are homothetic with center at D and scale factor 2 . It follows that

$$
P D^{\prime}=2\left(j-\frac{1}{2} a\right)=2 j-a .
$$

Similarly, we get $P E^{\prime}=b-2 l$ and $P F^{\prime}=c-2 g$. Since $U X$ and $P D^{\prime}$ are homothetic segments, then $U X$ and $P D^{\prime}$ are parallel and so are $V Y$ and $P E^{\prime}$. Hence $\angle D^{\prime} P E^{\prime}=\gamma$. Similarly, $\angle D^{\prime} P F^{\prime}=\beta$. So the area of triangle $D^{\prime} E^{\prime} F^{\prime}$ is given by the expression

$$
\begin{aligned}
{\left[D^{\prime} E^{\prime} F^{\prime}\right] } & =\left[D^{\prime} P E^{\prime}\right]+\left[D^{\prime} P F^{\prime}\right]-\left[E^{\prime} F^{\prime} P\right] \\
& =\frac{(2 j-a)(b-2 l) \sin \gamma}{2}+\frac{(2 j-a)(c-2 g) \sin \beta}{2}-\frac{(b-2 l)(c-2 g) \sin (\beta+\gamma)}{2} .
\end{aligned}
$$

Taking into account that $\sin (\beta+\gamma)=\sin (\pi-\alpha)=\sin \alpha$ and dividing by $[A B C]$ we obtain

$$
\begin{equation*}
\frac{\left[D^{\prime} E^{\prime} F^{\prime}\right]}{[A B C]}=\frac{(2 j-a)(b-2 l)}{a b}+\frac{(2 j-a)(c-2 g)}{c a}-\frac{(b-2 l)(c-2 g)}{b c} . \tag{3}
\end{equation*}
$$

Adding equations (2) and (3), expanding and factorizing,

$$
\begin{gathered}
\frac{[D E F]}{[A B C]}+\frac{\left[D^{\prime} E^{\prime} F^{\prime}\right]}{[A B C]}= \\
\frac{c a(4 l+b)-4 g a(m+l-b)-4 j(b(g+h-c)+l c)-4 k l c}{a b c}
\end{gathered}
$$

But $b=m+l, c=g+h$ and $a=j+k$, so

$$
\begin{aligned}
\frac{[D E F]}{[A B C]}+\frac{\left[D^{\prime} E^{\prime} F^{\prime}\right]}{[A B C]} & =\frac{c a(4 l+b)-4 j l c-4 k l c}{a b c} \\
& =\frac{c a(4 l+b)-4 c l(j+k)}{a b c} \\
& =\frac{c a(4 l+b)-4 c l a}{a b c} \\
& =1 .
\end{aligned}
$$

Therefore,

$$
[D E F]+\left[D^{\prime} E^{\prime} F^{\prime}\right]=[A B C] .
$$

Remark. The point P may cross the side lines of the triangle $A B C$ in points either interior or exterior to the sides. The reasoning in cases other than that considered above requires only minor adjustments.

References

[1] A. Bogomolny, Two Related Triangles of Equal Areas, Cut-the-knot.org, https://www. cut-the-knot.org/triangle/IHHH.shtml?fbclid=IwAR19Ez71Jq2-PZJQoNlcPV652I_ gsGcruj36DVxXUzgMXz6Ld6vctTf7wYs.
[2] M. Dalcín, S. N. Kiss Some Properties of the García Reflection Triangles 119-126, https: //www.heldermann-verlag.de/jgg/jgg25/j25h1dalc.pdf.
[3] A. Gutierrez, Ten Geometry Problems 81-90, gogeometry.com, https://Gogeometry.com/ math_geometry_online_courses/geometry_problems_81_90_online_math.html.
[4] E. A. J. García, Areal property of the circumcircle mid-arc triangle, geometriadominicana.blogspot.com, https://geometriadominicana.blogspot.com/2022/12/ areal-property-of-circumcircle-mid-arc.html.

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
 ${ }^{2}$ Corresponding author

