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1. Introduction

We start by stating this simple problem: In the Euclidean plane (O,
−→
i ,

−→
j ), take

two concentric circles (A) and (B) of radius a and b, respectively, centered at O.
Let A ∈ (A) with A(a cos(α); a sin(α)) and B ∈ (B) with B(b cos(β); b sin(β)) for
some reals α and β in [−π, π]. For C(r, 0), r > 0 the perpendicular bisectors of
[AC] and [BC] intersect (OA) at A′ and (OB) at B′, respectively. Assuming that
no opposite sides of the quadrilateral OA′CB′ are parallel, let I = (A′C)∩ (OB′)
and J = (B′C) ∩ (OA′). We fix all parameters except the radius b considered as
a variable b ≥ 0 and want to find b for which

(1) |IO ± IC| = |JO ± JC|.

In this context we state the known Urquhart’s theorem (see also [1]) as follows:

Theorem 1.1 ([3, 4]). For αβ ≤ 0, a ≥ r and b = a we have IO+IC = JO+JC
(see Figure 1).

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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Figure 1. Urquhart’s theorem

2. Main Results

Considering the lines (OA) and (OB) of equations y = tan(α)x and y = tan(β)x,
respectively, by straight calculations we have:

A′
(
cos(α)(a2 − r2)

2a− 2r cos(α)
,
sin(α)(a2 − r2)

2a− 2r cos(α)

)
and thus B′

(
cos(β)(b2 − r2)

2b− 2r cos(β)
,
sin(β)(b2 − r2)

2b− 2r cos(β)

)
.

We also verify that the line (CA′) is:

y =

(
sin(α)(a2 − r2)

(r2 + a2) cos(α)− 2ra

)
x− r sin(α)(a2 − r2)

(r2 + a2) cos(α)− 2ar
.

The points I and J are:

I


xI =

r cos(β) sin(α)(a2 − r2)

cos(β) sin(α)(a2 − r2)− sin(β)((r2 + a2) cos(α)− 2ar)
,

yI =
r sin(β) sin(α)(a2 − r2)

cos(β) sin(α)(a2 − r2)− sin(β)((r2 + a2) cos(α)− 2ar)
,

and by switching α ↔ β, a ↔ b:

J


xJ =

r cos(α) sin(β)(b2 − r2)

cos(α) sin(β)(b2 − r2)− sin(α)((r2 + b2) cos(β)− 2br)
,

yJ =
r sin(α) sin(β)(b2 − r2)

cos(α) sin(β)(b2 − r2)− sin(α)((r2 + b2) cos(β)− 2br)
.

Hereafter we asume that sin(α) sin(β) ̸= 0 since otherwise the configuration is
trivial. The next lemma collects some identities that can be obtained at www.
dcode.fr/math-expression-factor:

Lemma 2.1. Let α, β, r and a be reals numbers, set s = α+β
2

and d = α−β
2

:

(2) (sin(α)(a2 − r2))2 + ((r2 + a2) cos(α)− 2ar)2 = (a2 + r2 − 2ar cos(α))2.

(3)
r sin(α)(a2 − r2) + r sin(β)(a2 + r2 − 2ar cos(α))

= 2r(a sin(s) + r sin(d))(a cos(d)− r cos(s)).

www.dcode.fr/math-expression-factor
www.dcode.fr/math-expression-factor
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(4)
r sin(α)(a2 − r2)− r sin(β)(a2 + r2 − 2ar cos(α))

= 2r(r sin(s) + a sin(d))(a cos(s)− r cos(d)).

(5)
cos(β) sin(α)(a2 − r2)− sin(β)((r2 + a2) cos(α)− 2ar)

= 2(a sin(d) + r sin(s))(a cos(d)− r cos(s)).

Lemma 2.2. With the given definitions we have:

• OA′ =
|a2 − r2|

|2a− 2r cos(α)|
, OB′ =

|b2 − r2|
|2b− 2r cos(β)|

,

• CA′ =
a2 + r2 − 2ar cos(α)

|2a− 2r cos(α)|
and CB′ =

b2 + r2 − 2br cos(β)

|2b− 2r cos(β)|
,

• OI =
|r sin(α)(a2 − r2)|

| cos(β) sin(α)(a2 − r2)− sin(β)((r2 + a2) cos(α)− 2ar)|
,

• OJ =
|r sin(β)(b2 − r2)|

| cos(α) sin(β)(b2 − r2)− sin(α)((r2 + b2) cos(β)− 2br)|
,

• CI =
r| sin(β)|(a2 + r2 − 2ar cos(α))

| cos(β) sin(α)(a2 − r2)− sin(β)((r2 + a2) cos(α)− 2ar)|
,

• CJ =
r| sin(α)|(b2 + r2 − 2br cos(β))

| cos(α) sin(β)(b2 − r2)− sin(α)((r2 + b2) cos(β)− 2br)|
,

• CB′

OB′ ·
OI

CI
=

CJ

OJ
· OA′

CA′ (see also [2] page 63).

Proof. A straight application of previous calculations. □

For any reals α, β, r and a we define F±
α,β(a) whenever the denominator is non

zero by:

(6) F±
α,β(a) =

r sinα(a2 − r2)± r sin β(a2 + r2 − 2ar cos(α))

cos(β) sin(α)(a2 − r2)− sin(β)((r2 + a2) cos(α)− 2ar)
,

(with the same sign for ± on both sides). By Lemma 2.1 we know that

F+
α,β(a) =

r(a sin(s) + r sin(d))

a sin(d) + r sin(s)
and F−

α,β(a) =
r(a cos(s)− r cos(d))

a cos(d)− r cos(s)
.

In order to get identities of the form (1) we need to solve in b, F±
α,β(a) = ±F±

β,α(b).
This is summarizd in the next theorems.

Theorem 2.1. Under previous notation assuming sin(α) sin(β) ̸= 0:

(1) F+
α,β(a) = F+

β,α(b) if and only if

b = r
a(1− cos(α) cos(β)) + r(cos(β)− cos(α))

r(1− cos(α) cos(β)) + a(cos(β)− cos(α))
.



12 Trigonometric Identities and Urquhart’s Theorem

(2) F+
α,β(a) = −F+

β,α(b) if and only if b = −a.

(3) F+
α,β(a) = F−

β,α(b) if and only if b = r
a cos(α)− r

a− r cos(α)
.

(4) F+
α,β(a) = −F−

β,α(b) if and only if b = r
a cos(β) + r

r cos(β) + a
.

(5) F−
α,β(a) = F−

β,α(b) if and only if b = a.
(6) F−

α,β(a) = −F−
β,α(b) if and only if

b = r
a(1 + cos(α) cos(β))− r(cos(β) + cos(α))

a(cos(β) + cos(α))− r(1 + cos(α) cos(β))
.

(7) F−
α,β(a) = F+

β,α(b) if and only if b = r
r − a cos(β)

r cos(β)− a
.

(8) F−
α,β(a) = −F+

β,α(b) if and only if b = r
r − a cos(α)

a− r cos(α)
.

Theorem 2.2. Take α and β in ]0; π[, a ≥ 0 with r > 0:

1) For b = r
a(1− cos(α) cos(β)) + r(cos(β)− cos(α))

r(1− cos(α) cos(β)) + a(cos(β)− cos(α))
,

• if α ≥ β then
– for a ≤ r, we have b ≤ r and |IO − IC| = |JO − JC|,
– for a ≥ r, we have b ≥ r and IO + IC = JO + JC,

• if α < β then
– for r(cos(α)−cos(β))

1−cos(α) cos(β)
≤ a ≤ r, we have 0 ≤ b ≤ r and |IO − IC| =

|JO − JC|,

– for r ≤ a < r(1−cos(α) cos(β))
(cos(α)−cos(β))

, we have b ≥ r and IO+IC = JO+JC.

2) For b =
r(a cos(α)− r)

a− r cos(α)
,

• if 0 < α < π
2

then
– for 0 ≤ a < r cos(α) ≤ r, we have b ≥ r and |IO−IC| = |JO−JC|,
– for a ≥ r

cos(α)
≥ r, we have b ≤ r and IO + IC = JO + JC.

3) For b =
r(a cos(β) + r)

a+ r cos(β)
,

• if 0 < β ≤ π
2

then
– for a ≥ r, we have b ≤ r and IO + IC = JO + JC,

– for a ≤ r, we have b ≥ r and |IO − IC| = |JO − JC|,
• if π

2
< β < π then
– for −r cos(β) < a ≤ r, we have b ≥ r and |IO − IC| = |JO − JC|,
– for r ≤ a ≤ −r

cos(β)
, we have b ≤ r and IO + IC = JO + JC.

4) For b = a,

• for a ≥ r, we have |IO − IC| = |JO − JC|,
• for a ≤ r, we have IO + IC = JO + JC.
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5) For b = r
a(1 + cos(α) cos(β))− r(cos(β) + cos(α))

a(cos(β) + cos(α))− r(1 + cos(α) cos(β))
,

• if α + β ≤ π then
– for 0 ≤ a ≤ r(cos(α)+cos(β))

1+cos(α) cos(β)
≤ r, we have b ≤ r and IO + IC =

JO + JC,

– for r ≤ r(1+cos(α) cos(β))
cos(α)+cos(β)

< a, we have b ≥ r and |IO − IC| = |JO −
JC|.

6) For b =
r(r − a cos(β))

r cos(β)− a
,

• if 0 < β < π
2

then
– for 0 ≤ a < r cos(β) ≤ r, we have b ≥ r and IO + IC = JO + JC,

– for a ≥ r
cos(β)

≥ r, we have b ≤ r and |IO − IC| = |JO − JC|.

7) For b =
r(r − a cos(α))

a− r cos(α)
,

• if 0 < α < π
2

then
– for r cos(α) < a ≤ r, we have b ≥ r and IO + IC = JO + JC,

– for r ≤ a ≤ r
cos(α)

, we have b ≤ r and |IO − IC| = |JO − JC|,
• if π

2
≤ α < π then
– for a ≥ r, we have b ≤ r and |IO − IC| = |JO − JC|,
– for a ≤ r, we have b ≥ r and IO + IC = JO + JC.

Proof. The expressions of b are direct computations from Theorem 2.1. The
bounds on (α, β, a) are to verify that b is nonnegative and the bounds on b can
be deduced by taking the derivative of b as a function in a. □

The case α ∈]0; π[ and β ∈] − π; 0[ can be deduced from the previous theorem
by replacing (verbatim) β with |β| and switching identities, that is, IO + IC =
JO + JC ↔ |IO − IC| = |JO − JC| and vice versa. This gives for example
Theorem 1.1 as a consequence of case 4) which also appeared in [5].
We point out at last that if the coordinates of J are taken as real functions, the
following pair values of b give the same point J :(
a, r

r − a cos β

r cos(β)− a

)
,
(
−a, r

r + a cos β

r cos(β) + a

)
,

(
r
a cos(α)− r

a− r cos(α)
, r

a(1− cos(α) cos(β)) + r(cos(β)− cos(α))

r(1− cos(α) cos(β)) + a(cos(β)− cos(α))

)
,

and (
r
r − a cos(α)

a− r cos(α)
, r

a(1 + cos(α) cos(β))− r(cos(β) + cos(α))

a(cos(β) + cos(α))− r(1 + cos(α) cos(β))

)
.

Example 2.1. In this example we illustrate the proven identities for a = 5, r = 3,
α = π

3
, and β = −π

6
.
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1) b = 288
√
3−21

143
, |IO − IC| = |JO − JC| 3) b = 96

√
3+45
73

, |IO − IC| = |JO − JC|

4) b = 5, IO + IC = JO + JC 5) b = 288
√
3+21

143
, IO + IC = JO + JC

6) b = 96
√
3−45
73

, IO + IC = JO + JC 7) b = 3
7
, IO + IC = JO + JC.
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