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1. Introduction

Let the sides of a triangle be a, b, and c, and let r and R be the inradius and
circumradius, respectively. Let K denote the area of the triangle and let s denote
its semiperimeter.

There is a vast amount of literature concerning inequalities between these quant-
ities. A typical inequality is

(1) a2 + b2 + c2  8R2 + 4r2

which is inequality 5.16 in [4]. Compendiums of such inequalities can be found in
[4], [20], and [10].

It is the purpose of this paper to present an e�cient algorithm for proving such
inequalities. The algorithm handles symmetric homogeneous inequalities involving
rational functions of the quantities a, b, c, R, r, s, and K, as well as other elements
of a triangle, such as the exradii and trigonometric functions of the angles of the
triangle.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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The algorithm can also discover new inequalities if a suspected inequality is of a
form containing an undetermined constant k, such as
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which was proposed as a problem by Huang in [17] and discussed in [39]. Our
algorithm found that the best constant k that makes this inequality true is

k = 2
⇣
1 + 3

p
2 + 3

p
4
⌘

which agrees with the value found by Chen in [9].

2. Background Information

The types of inequalities we are interested in fall into the study of real closed fields.
An inequality such as x2 + y2 + z2 � xy + yz + zx can be formally represented in
such a field by the formula

(8x)(8y)(8z)
�
(x � 0) ^ (y � 0) ^ (z � 0)) x2 + y2 + z2 � xy + yz + zx

�
.

The symbols such as 9 and 8 are known as quantifiers. In 1930, Tarski discovered
a decision procedure for the formal theory of real closed fields. His method was
first published in 1948 [29]. Tarski’s method involves successive elimination of
quantifiers using Sturm sequences. This method can be used to automatically
prove all the inequalities discussed in this paper as well as many problems in
Euclidean geometry. Unfortunately, Tarski’s algorithm, although totally e↵ective,
is completely impractical given the state of the art of computers today. The same
holds true for an improvement given by Seidenberg, [26].

Over the years, improved methods have been devised for e↵ectively proving results
in the theory of real closed fields. For example, Collins [13] devised a method that
employs cylindrical decomposition using Gröbner bases to eliminate quantifiers.
See Davenport [14], section 3.2, for an exposition. See also [12].

The state of the art has improved so much that modern computer algebra systems,
such as Mathematica, can now automatically solve large classes of systems of equa-
tions and inequalities. According to the Mathematica technical documentation,
their function Solve uses cylindrical algebraic decomposition and Gröbner basis
methods [38] using an e�cient version of the Buchberger Algorithm [7]. Solve can
always, in principle, solve any system of polynomials equations and inequalities
over the real domain [37].

For example, let us see how we can use Mathematica to prove inequality (1). Using
the definitions s = (a + b + c)/2, K =

p
s(s� a)(s� b)(s� c), R = abc/(4K),

and r = K/s, we can issue the following Mathematica commands.
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s = (a+b+c)/2;
K = Sqrt[s(s-a)(s-b)(s-c)];
R = a*b*c/(4K);
r = K/s;
inequality = a^2+b^2+c^2 <= 8R^2+4r^2;
triang = a>0 && b>0 && c>0 && a+b>c && b+c>a && c+a>b;
Simplify[inequality, triang]

The final Simplify command tells Mathematica to simplify the specified inequal-
ity, subject to the specified restrictions that the variables a, b, and c are positive
real numbers that satisfy the triangle inequality. In under a tenth of a second,
Mathematica returns the response

True

indicating that the inequality is true.

As the complexity of the inequality increases, the running time becomes longer.
For example, consider the inequality
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found in [39]. It took version 12.0 of Mathematica 4.5 minutes to prove this in-
equality using the same procedure running on a 3.5 GHz iMac. As the complexity
of the inequality increases, the running time gets even larger.

The method of cylindrical decomposition may be too slow for proving the types of
inequalities we are interested in. That is because our triangle inequalities generally
involve three quantifiers, and these methods attempt to eliminate one quantifier
at a time. Each elimination step causes an expression explosion. In our case, the
expressions involved are symmetric; so a method that removes one quantifier at a
time is bound to be non-optimal.

Blundon and others ([3], [5], [21]) have attacked the problem by first expressing
the proposed inequality in terms of R, r, and s. We use Blundon’s algorithm
to provide a more e�cient algorithm for proving triangle inequalities than the
algorithms built in to Mathematica.

3. Theoretical Basis for the Algorithm

In 1965, Blundon [3] showed that a triangle with circumradius R, inradius r, and
semiperimeter s exists if and only if R, r, and s satisfy what is now known as
Blundon’s Fundamental Inequality:

(2) s2(18Rr � 9r2 � s2)2  (s2 � 3r2 � 12Rr)3.

Since r > 0, this is algebraically equivalent to the inequality

(3) 4R(R� 2r)3 � (s2 � 2R2 � 10Rr + r2)2.

Given a proposed homogeneous inequality involving R, r, and s, only the ratios
of R, r, and s are of interest. Following a variation of Bottema [5], we can let
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x = r/R and y = s/R. Applying these substitutions to inequality (2), Blundon’s
Fundamental Inequality becomes

(4) (x2 + y2)2 + 12x3 � 20xy2 + 48x2 � 4y2 + 64x  0.

The region determined by inequality (4) and x > 0 and y > 0 is called the
Fundamental Region. The region in the xy-plane representing (x, y) values that
satisfy a given inequality is called the inequality region.

The Basis for Blundon’s algorithm. A triangle inequality, expressed in terms
of x and y will be true if and only if every point in the fundamental region satisfies
the given inequality.

Alternative Description. An inequality expressed in terms of x and y will be
true if and only if the inequality region contains the fundamental region.

Each point in the xy-plane corresponds to an equivalence class of triples (R, r, s).
Those pairs (x, y) that determine a triangle lie inside the region, R, bounded by
the y-axis and the hypocycloid whose parametric representation is given by

(5)

8
>><

>>:

x =
4(t2 � 1)

(t2 + 1)2

y =
8t3

(t2 + 1)2

with t > 1. Note that our t is the reciprocal of the t used in [3]. The region R
has cusps at (0, 0), (0, 2), and (1/2, 3

p
3/2). The region R is shown in Figure 1.

The points on the bounding hypocycloid correspond to isosceles triangles. The
point at (1/2, 3

p
3/2) corresponds to an equilateral triangle. The points on the

y-axis from (0, 0) to (0, 2) correspond to degenerate triangles.

Figure 1. Fundamental Region
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According to Bludon’s original paper, [3], the geometrical significance of the para-
meter t is that t is the cotangent of one-half of the base angle of the isosceles
triangle corresponding to t.

According to [20, p. 9], the equation for the upper boundary of the fundamental
region is

y =
q

2 + 10x� x2 + 2(1� 2x)3/2, 0 < x  1

2
,

and the equation for the lower boundary is

y =
q

2 + 10x� x2 � 2(1� 2x)3/2, 0 < x  1

2
.

4. Input to the Algorithm

The following symbols will be allowed in the inequalities to be proven. Their
meaning is given in the following table.

Input Variables
Notation Description
a, b, c The sides of the triangle
A,B,C The angles of the triangle
K The area of the triangle
s The semiperimeter of the triangle
r The inradius of the triangle
R The circumradius of the triangle
h(a), h(b), h(c) The altitudes of the triangle
m(a),m(b),m(c) The medians of the triangle
w(a), w(b), w(c) The angle bisectors of the triangle
r(a), r(b), r(c) The exradii of the triangle
g(a), g(b), g(c) The Gergonne cevians of the triangle
n(a), n(b), n(c) The Nagel cevians of the triangle

5. Support Algorithms

Before describing our main algorithm, we present some algorithms that will be
needed later.

Algorithm T [Remove Trigonometric Functions]

This algorithm removes trigonometric functions from an expression.

INPUT: Any expression containing the standard trigonometric functions of in-
teger linear combinations of constants and the variables A, B, and C. Examples:
cos5 A + sin(3B + 5C) and csc(2A + ⇡/5). Also permitted are expressions of
the form tan x

2 , sin2 x
2 , and cos2 x

2 where x is any integer linear combination of
constants and the variables A, B, and C.

STEP 1: [Remove Inverse Trigonometric Functions]
The trigonometric functions sec, csc, and cot are replaced by the reciprocals of
the functions cos, sin, and tan, respectively.



Stanley Rabinowitz 6

STEP 2: [Remove Half Angles]
Allowable trigonometric functions of half angles are removed as follows where x
denotes any integer linear combination of constants and the variables A, B, C.

tan
x

2
! sinx

1 + cosx

sin2 x

2
! 1� cosx

2

cos2 x

2
! 1 + cosx

2

STEP 3: [Remove Tangent]
The trigonometric function tan x is replaced by (sin x)/(cos x).

STEP 4: [Remove Sums and Multiples]
The Mathematica function TrigExpand is used to get rid of trigonometric func-
tions of multiple angles and sums of angles using familiar identities such as
sin 2✓ = 2 sin ✓ cos ✓ and sin(x + y) = sinx cos y + cosx sin y.

STEP 5: [Evaluate constants]
Trigonometric functions of a constant are replaced by their numerical values. For
example, sin(⇡/3) is replaced by

p
3/2.

STEP 6: [Convert to a-b-c Form]
The basic trigonometric functions are then replaced by expressions involving vari-
ables a, b, c, and R using standard formulas such as the Law of Cosines and the
Extended Sine Law by applying substitutions such as the following.

sinA ! a

2R

cosA ! b2 + c2 � a2

2bc

OUTPUT: The output of algorithm T is an equivalent expression that does not
contain any trigonometric functions.

Algorithm R [Convert to R-r-s Form]

This algorithm takes a symmetric homogeneous expression (not involving trigo-
nometric functions) and converts it to an equivalent expression involving only the
symbols R, r, and s.

For this paper, we say that an expression f(a, b, c) (not involving trigonometric
functions) is symmetric if interchanging any two members from the set {a, b, c}
does not change the value of the expression. Note that by this definition, ab2 +
bc2 + ca2 is not a symmetric expression.

The expression f(a, b, c) is said to be homogeneous if f(at, bt, ct) = tnf(a, b, c) for
some constant n.

INPUT: Any symmetric homogeneous rational function of expressions involving
the variables and functions listed in Section 4, except that only even powers of m,
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w, g, and n are permitted. Trigonometric functions allowed as input to Algorithm
T are also permitted.

STEP 1: [Remove Trigonometric Functions]

Apply Algorithm T to remove any trigonometric functions.

STEP 2: [Remove Triangle Elements]

Other triangle elements are removed using substitutions such as the following.

K ! rs

h(a) ! 2rs

a

r(a) ! rs

s� a

m(a)2 ! 1

4
(2b2 + 2c2 � a2)

w(a)2 ! 4bcs(s� a)

(b + c)2

g(a)2 ! (s� a)(as� (b� c)2)

a

n(a)2 ! c2(s� b) + b2(s� c)� a(s� b)(s� c)

a

These formulas are obtained by using Stewart’s Theorem [2, p. 152].

STEP 3: [Remove a, b, and c]

The expression is now a homogeneous rational function of a, b, c, R, r, and s.
Combine all terms giving an expression consisting of a numerator and a denom-
inator. The numerator and denominator are symmetric functions of a, b, and c.
By the Fundamental Theorem of Symmetric Functions [31], these expressions are
converted into expressions involving R, r, and s by using the following transform-
ations on the elementary symmetric polynomials.

(6)

8
><

>:

a + b + c! 2s

ab + bc + ca! r2 + s2 + 4rR

abc! 4rRs

These formulas come from [20, p. 7]. This transformation is performed by the
Mathematica function SymmetricReduction.

OUTPUT: The output of algorithm R is an equivalent expression that contains
only the variables R, r, and s.

Algorithm P [Remove Positive Factors]

This algorithm removes factors from a polynomial expression that are always pos-
itive subject to a given set of constraints. For example, subject to the constraint
x > 0, this algorithm would remove factors like 7x + 5, x2 + 1, and (x3� x + 17)6

from an expression because these factors are always positive when x > 0.

INPUT: The input to this algorithm is a polynomial expression, expr, in a set
of variables, vars, and a set of constraints placed on those variables.
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STEP 1: [Factor]

Factor expr as a product
Q

factei
i where each facti is a squarefree polynomial.

This can be done with the Mathematica function FactorSquareFree.

STEP 2: [Remove positive factors]

Examine each facti. Use the Mathematica command

Simplify[fact>0,constraints]

to determine if the expression facti is always positive subject to the given con-
straints. If so, remove the factor factei

i .

OUTPUT The output of algorithm P is a polynomial which is positive if and
only if the original expression was positive.

Technical note. Step 1 of this algorithm requires us to factor a polynomial,
possibly involving multiple variables. Factoring multivariate polynomials is hard.
According to [38], Mathematica factors a multivariate polynomial by substituting
appropriate choices of integers for all but one variable, then factoring the result-
ing univariate polynomials and reconstructing multivariate factors using Wang’s
algorithm [30]. To factor a univariate polynomial, Mathematica uses a variant of
the Cantor-Zassenhaus algorithm [8] to factor modulo a prime, then uses Hensel
lifting and recombination [16] to build up factors over the integers.

Step 1 doesn’t need to perform a full factorization. Instead, it is simpler to call
the Mathematica function FactorSquareFree to find only factors of the form
polynomialn where n > 1. The function FactorSquareFree is faster than Factor
because it works by finding a derivative and then iteratively computing GCDs
[38].

Note 2. You might be tempted to improve this algorithm by removing any factors
of the form fact2n under the assumption that such expressions are positive. This
would be incorrect. For example, the inequality (x� 2)8(x2 � 7x + 1) � 0 is not
equivalent to the inequality x2� 7x+1 � 0 because the first inequality is true for
x = 2 while the second one isn’t.

Algorithm F [Remove Fractions from an Inequality]

This algorithm replaces an inequality involving rational functions of x and y with
an equivalent inequality involving only polynomial functions of x and y.

INPUT: The input to this algorithm is an inequality of the form expr � 0 or
expr > 0 where expr is a rational function of variables x and y satisfying the
constraints x > 0 and y > 0.

STEP 1: [Gather Terms]

Gather all the terms together to put the inequality in the form
num

den
� 0

where num and den are polynomials

STEP 2: [Remove Constants from Denominator]

If den is a positive constant, multiply both sides of the inequality by den. If den
is a negative constant, multiply both sides of the inequality by �den.
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STEP 3: [Remove Positive Factors]

Apply Algorithm P with variables x and y using the constraints x > 0 and y > 0
to remove any positive factors occurring in either num or den. This does not
change the truth value of the inequality because fg � 0 is equivalent to f � 0 if
g > 0.

The inequality is now of the form
num

den
� 0

where den is squarefree. Multiply both sides of the inequality by the positive
quantity den2. The inequality is now of the form

f(x, y) � 0,

where f(x, y) is a polynomial.

OUTPUT: The output of algorithm F is an inequality that contains only poly-
nomial functions of x and y and is equivalent to the given inequality.
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6. The Algorithm

Algorithm B [Prove Triangle Inequality using Blundon’s Method]

Algorithm B (short for Algorithm Blundon) takes a conjectured inequality and
determines if the inequality is true or false.

INPUT: An inequality involving symmetric homogeneous rational functions of
variables and functions listed in Section 4.

STEP 1: [Bring larger expression to left]

We change the inequality symbol to be > or � with the following substitutions.

x  y ! y � x

x < y ! y > x

For the remainder of the description of this algorithm, we let the symbol � denote
either > or �.

STEP 2: [Collect terms]

We bring all terms to the left side of the inequality using the following substitution.

x � y ! x� y � 0

STEP 3: [Convert to R-r-s Form]

Apply Algorithm R to the left side of the inequality to produce an equivalent
inequality involving only the variables R, r, and s.

STEP 4: [Convert to x-y Form]

Combine all terms to form a single rational function on the left side of the in-
equality. This expression is now a fraction that contains only the variables R, r,
and s. The numerator and denominator are homogeneous polynomials in R, r,
and s, so only the ratios of R, r, and s are of interest.

To get rid of R, r, and s, we apply the following transformations.

r ! xR

s ! yR

After simplifying the resulting expression, the inequality will now be of the form

f(x, y)Rn � 0.

Multiply both sides of the inequality by the positive quantity R�n to get

f(x, y) � 0,

an inequality whose only variables are x and y. The function f is a rational
function. It is not necessarily homogeneous.

STEP 5: [Remove fractions]

Apply Algorithm F to replace the inequality by an equivalent inequality in which
the left side is a polynomial in x and y.

STEP 6: [Find the degree of f(x, y)]
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The inequality is now of the form f(x, y) � 0, where f is a polynomial. Find
the degree of the polynomial f(x, y). This is a bit tricky in Mathematica because
there is no built-in function to find the degree of a multivariate polynomial. The
following function can be used.

polynomialDegree[poly_] :=
Max[Plus@@@CoefficientRules[#][[All,1]]]&@poly;

Denote the degree by deg.

STEP 7: [Check the polynomial inequality f(x, y) � 0]

A triangle inequality, expressed in terms of x and y will be true if and only if
every point in the fundamental region satisfies the given inequality.

If deg > 2, determine if the inequality f(x, y) � 0 is true by using the following
Mathematica commands

fundamentalFunction = (x^2+y^2)^2+12x^3-20x*y^2+48x^2-4y^2+64x;
fundamentalRegion = fundamentalFunction<=0 && x>0 && y>0;
truth = Simplify[f[x,y] >= 0, fundamentalRegion];

If the simplified form of the inequality is True, then the inequality is true. If
the simplified form of the inequality is not True, then the inequality is false. Set
truth to False. Exit and return truth as the result of this algorithm.

If deg  2, a faster procedure can be used. Continue with step 8.

STEP 8: [Convert to t-form]

If deg  2, then the region of the inequality is convex. The triangle inequality,
expressed in terms of x and y will be true if and only if every point on the boundary
of the fundamental region satisfies the given inequality. ((( need to check )))

We saw in Figure 1 that the boundary of the fundamental region is a portion of
a hypocycloid and a portion of the y-axis. Points on the y-axis correspond to
degenerate triangles, so it su�ces to check that all the points on the hypocycloid
portion satisfy the given inequality.

Use equation set (5) to express the boundary of the fundamental region as a
function of t with t > 1. Make the following substitutions.

x ! 4(t2 � 1)

(t2 + 1)2

y ! 8t3

(t2 + 1)2

The given inequality is now equivalent to an inequality of the form g(t) � 0
subject to the constraint t > 1.

STEP 9: [Remove positive factors]

Apply Algorithm P with variable t using the constraint t > 1 to remove any
positive factors occurring in either the numerator or denominator of g.

STEP 10: [Convert to polynomial]

Multiply both sides of the inequality by the square of the denominator to clear of
fractions.
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STEP 11: [Check the polynomial inequality g(t) � 0]

To see if the inequality g(t) � 0 is true, issue the following Mathematica command:

truth = Simplify[g[t] >= 0, t>1]

If the simplified form of the inequality is True, then the inequality is true. If
the simplified form of the inequality is not True, then the inequality is false. Set
truth to False. Return truth as the result of this algorithm.

OUTPUT: Algorithm B returns true or false indicating the correctness of the
conjectured inequality.

7. Example

Let us illustrate the algorithm by working through the steps on the inequality

11
p

3

5R + 12r
 1

a
+

1

b
+

1

c
.

Step 1 turns this into the equivalent inequality

1

a
+

1

b
+

1

c
� 11

p
3

5R + 12r
.

Step 2 turns this into the equivalent inequality

1

a
+

1

b
+

1

c
� 11

p
3

5R + 12r
� 0.

For Step 3, we combine all terms to get the equivalent inequality

�11
p

3abc + 12abr + 5abR + 12acr + 5acR + 12bcr + 5bcR

abc(12r + 5R)
� 0.

Then we do a symmetric reduction, to get the equivalent inequality

�11
p

3(abc) + (12r + 5R)(ab + bc + ca)

(abc)(12r + 5R)
� 0.

Now we replace the elementary symmetric functions by their equivalents using r,
R, and s, using equation set (6), to get the equivalent inequality

�11
p

3(4rRs) + (12r + 5R)(r2 + s2 + 4rR)

(4rRs)(12r + 5R)
� 0.

Step 4 uses r = xR and s = yR to give the equivalent inequality

�11
p

3(4xyR3) + (12xR + 5R)((xR)2 + (yR)2 + 4xR2)

(4xyR3)(12xR + 5R)
� 0.

Simplifying the expression on the left gives

�11
p

3(4xy) + (12x + 5)(x2 + y2 + 4x)

(4xy)(12x + 5)R
� 0.

Multiply both sides of the inequality by R and simplifying gives the equivalent
inequality

12x3 + 53x2 + 12xy2 � 44
p

3xy + 20x + 5y2

(4xy)(12x + 5)
� 0.
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In step 5, we note that the numerator does not factor and every factor in the
denominator is positive because x > 0 and y > 0. We therefore multiply both
sides of the inequality by the denominator to get the equivalent inequality

12x3 + 53x2 + 12xy2 � 44
p

3xy + 20x + 5y2 � 0.

Per Step 6, we note that the degree of this polynomial is 3.

For Step 7, we need to determine if every point in the Fundamental Region
satisfies the given inequality. That is, we want to know if the inequality region
contains the Fundamental Region.

Figure 2 (left) shows a portion of the graph of func � 0 in the portion of the
plane bounded by �0.2  x  1.2 and �0.2  y  3. The points in the region
are yellow. This is the inequality region. Its boundary is red.

Figure 2 (right) shows the Fundamental Region in green. Its boundary is blue.

Figure 2. Inequality Region (yellow) and Fundamental Region (green)

Figure 3 shows both regions plotted on the same coordinate plane.

Figure 3. Inequality Region (yellow) and Fundamental Region
(blue boundary)
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The plots in Figure 2 seem to indicate that every point in the Fundamental Region
(inside the blue curve) lies within the inequality region (yellow). This shows
graphically that the inequality is true. The white region consists of those points
that are not in either region.

However, examining the relationship of the regions by eye is not good enough.
We use the procedure given in Step 7 by issuing the following commands

fundamentalRegion = (x^2+y^2)^2+12x^3-20xy^2+48x^2-4y^2+64x<=0
&& x>0 && y>0;

inequality = 12x^3+53x^2+12x*y^2-44Sqrt[3]x*y+20x+5y^2>=0;
Simplify[inequality, fundamentalRegion]

which determines if the inequality inequality is true subject to the constraint
given by the the inequalities comprising fundamentalRegion.

The Mathematica output from the Simplify call is True. This means that the
given inequality is true. The run time of the algorithm was 0.016 sec, compared
to the 4.5 minutes needed if just using the Mathematica Simplify command.

8. Finding a counterexample

Algorithm C [Find Counterexample to Inequality]

If Algorithm B declares that an inequality is false, the following procedure can be
used to exhibit a counterexample. Suppose that in step 11,

truth = Simplify[g[t] >= 0, t>1]

did not return True.

• Use the following Mathematica command to find a value of t that makes
the inequality false.

FindInstance[!(g[t]>=0) && t>1, t]

• Use that value of t to find the corresponding values of x and y.

(7)

8
>><

>>:

x =
4(t2 � 1)

(t2 + 1)2

y =
8t3

(t2 + 1)2

• Use these values of x and y to find r, R, and s. Without loss of generality,
assume that R = (t2 + 1)2. Then

(8)

8
><

>:

R = (t2 + 1)2

r = 4(t2 � 1)

s = 8t3

• This gives you the counterexample in terms of r, R, and s. If you want to
express the counterexample in terms of a, b, and c, use the fact that a, b,
and c are the roots of the equation

(9) x3 � (2s)x2 + (r2 + s2 + 4rR)x� (4rRs) = 0.
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This fact follows from Vieta’s Formulas [35] and equation set (6).

If Algorithm B did not get to step 11 because deg> 2, we can construct a counter-
example from the polynomial inequality found in step 7.

In this case, use the following Mathematica commands to find values for x and y
that make the inequality false.

fundamentalRegion = fundamentalFunction<=0 && x>0 && y>0;
FindInstance[!(f[x,y] >= 0) && fundamentalRegion, {x,y}]

This gives you the counterexample in terms of x and y. Use the relationships

(10)

⇢
r = xR

s = yR

to find r, R, and s. Only their ratios are important, so any convenient value
for R can be chosen. As before, equation (9) can then be used to express the
counterexample in terms of a, b, and c.

Example 1.

Suppose we want to find a counterexample to the proposed inequality

s2  r2 + 4rR + 4R2.

We apply Algorithm B. The R-r-s form is

r2 + 4rR + 4R2 � s2 � 0.

The x-y form is

x2 � y2 + 4x + 4 � 0.

The t form is

t4 � 6t2 + 1 � 0.

Polynomial inequalities with one variable are well-understood. The following plot
shows that t4 � 6t2 + 1 can be negative when t > 1.

Figure 4. Plot of g(t) = t4 � 6t2 + 1
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But to use the method described above, we use the Mathematica command

FindInstance[t^4-6t^2+1<0 && t>1, t]

which returns t = 2 as a counterexample. Equation set (7) then give x = 12/25
and y = 64/25. Equation set (8) then give R = 25, r = 12, and s = 64 as our
counterexample.

If we want to present the counterexample in terms of a, b, and c, we issue the
commands

equationForabc = x^3-2s*x^2+(r^2+s^2+4R*r)x-4R*r*s == 0;
Solve[equationForabc/.{R->25, r->12, s->64}, x]

which tells us that a, b, and c are 40, 40, and 48. Scaling down, we can say that
the triangle with sides 5, 5, and 6 is a counterexample.

Now let’s work through an example where the degree of the xy-polynomial is
larger than 2, so that the t-form cannot be used.

Example 2.

Suppose we want to find a counterexample to the proposed inequality
26

5R + 12r
 1

a
+

1

b
+

1

c
.

We apply Algorithm B. The R-r-s form is

12r3 + 53r2R + 20rR2 � 104rRs + 12rs2 + 5Rs2

48r2Rs + 20rR2s
� 0.

The x-y Form is

12x3 + 53x2 + 12xy2 � 104xy + 20x + 5y2

4 (12x2 + 5x) y
� 0.

After clearing of fractions (step 5), we find that the inequality is equivalent to

12x3 + 53x2 + 12xy2 � 104xy + 20x + 5y2 � 0.

The polynomial on the left is of degree 3, so we cannot use the t-Form.

We use the Mathematica command
FindInstance[12 x^3+53 x^2+12 x y^2-104 x y+20 x+5 y^2<0

&& x>0 && y>0 && fundamentalFunction <= 0, {x,y}]

which returns the instance x = 1/8 and y = 13/8. Without loss of generality, let
R = 8, so that R = 8, r = 1, and s = 13 is our counterexample. The equation for
a, b, and c becomes

x3 � 26x2 + 202x� 416 = 0,

so the values for a, b, and c that give a counterexample are the roots of this
equation. These are a ⇡ 3.24686, b ⇡ 10.2352, and c ⇡ 12.5179.
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9. Finding Best Inequalities with One Parameter

Suppose we want to find a triangle inequality involving some undetermined con-
stant k, and we want to find the best value for k. For example, suppose we want
to find an inequality of the form

s  2R + kr

where k is some constant. Suppose further that we want the “best” value for k
that makes this inequality true (i.e., in this case, we want the smallest possible
value for k).

If {fi � 0} is a set of inequalities, we say that f 2 {fi} is the best inequality
of the set if f � fi for all i. If {f(k) � 0} is a set of inequalities involving a
parameter k, we say that k0 is the best constant k if f(k0) � f(k) for all k or if
f(k0)  f(k) for all k. See [20, p. 43].

Algorithm K [Find Best Constant k]

Find the best value for k for a given inequality containing the parameter k.

INPUT: We are given an inequality f(k) � 0 involving a real parameter k and
symmetric homogeneous rational functions of variables and functions listed in
Section 4.

STEP 1: Apply Algorithm B, but stop at step 7, when we are about to check if
f(x, y) � 0. In this case, the inequality is actually of the form f(x, y, k) � 0.

STEP 2: Use the following Mathematica commands to determine the set of
values for k that make the inequality true, where expr= f(x, y, k).

fundamentalFunction = (x^2+y^2)^2+12x^3-20x*y^2+48x^2-4y^2+64x;
fundamentalRegion = fundamentalFunction <= 0 && x >= 0 && y >= 0;
Resolve[ForAll[{x, y}, fundamentalRegion, expr >= 0]]

Resolve eliminates 8 and 9 quantifiers from an expression. According to [36],
Resolve[expr] can in principle always eliminate quantifiers if expr contains only
polynomial equations and inequalities over the reals.

OUTPUT: The conditions that k must satisfy to make the given inequality true.

Example 1.

Let’s apply Algorithm K to the inequality s  2R + kr.

In this case, Algorithm K returns 4 + k � 3
p

3. Thus, the smallest value for k is
3
p

3� 4. This agrees with the value given in [20, p. 47].

We could also check that this value is plausible by using Algorithm B. Algorithm
B reports that the inequality s  2R + (3

p
3 � 4)r is true but the inequality

s  2R + (3
p

3� 4� 1/1000)r is false.
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Example 2.

For a more complicated example, we look at the inequality

11
p

3

5R + 12r + k(2r �R)
 1

a
+

1

b
+

1

c

considered by Wu in [39]. In this case, the x-y form is

(2kx� k + 12x + 5)⇥
(2kx3 + 7kx2 + 2kxy2 � 4kx� ky2 + 12x3 + 53x2 + 12xy2 � 44

p
3xy + 20x + 5y2)

and Algorithm K returns the fact that k must be less than or equal to the root of
the equation

405x5 + 6705x4 + 129586x3 + 1050976x2 + 2795373x� 62181 = 0

that is approximately 0.0220608. This agrees with the result found by Wu.

Example 3.

In this example, the variable k occurs more than once in the inequality.

Chirciu [11] found the inequality
⇣X

ra

⌘✓X 1

ra

◆
+

2kr

R
� (k + 9)

Y a + b

2c
for k  37

11
.

To find the best value for k we apply Algorithm K which returns the fact that

k  175 + 16
p

94

81
.

This gives a stronger inequality.

Theorem 1. The following inequality holds for all triangles.
⇣X

ra

⌘✓X 1

ra

◆
+

2kr

R
� (k + 9)

Y a + b

2c
for k  175 + 16

p
94

81
.
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10. Finding Conditions for Equality

If an inequality is true, we can find the conditions for which equality holds using
the following algorithm.

Algorithm Q [Find Conditions for Equality]

Algorithm Q determines all triangles for which a given inequality becomes an
equality.

INPUT: An inequality involving symmetric homogeneous rational functions of
variables and functions listed in Section 4.

STEP 1: Apply Algorithm B, but stop at step 7 when we are about to check if
f(x, y) � 0.

STEP 2: Change the inequality symbol to an equality symbol.

STEP 3: [Check the polynomial equality f(x, y) = 0]

Use Mathematica to solve the equation using the commands

Solve[f[x,y]==0 && fundamentalRegion,{x,y},PositiveReals]

which finds all (x, y) in the fundamental region for which the equality is true.

STEP 4: [Find R, r, and s]

A triangle satisfying the equality is unique only up to a scale factor, so we can
pick any value we want for R. For simplicity, pick R = 1.

For each (x, y) found in Step 3, find the corresponding values for R, r, and s using
equation set (10).

R = 1

r = x

s = y

Each triple (R, r, s) so found represents a triangle for which equality holds in the
given inequality.

STEP 5: (optional) [Find a, b, and c]

If you want to describe the triangle in terms of its sides rather than in terms of
R, r, and s, proceed as follows. The values of a, b, and c are the roots of the
equation

x3 � 2sx2 + (r2 + s2 + 4rR)x� 4rRs = 0

as we saw in Algorithm C.

OUTPUT: The set of triangles for which the given inequality becomes an equal-
ity.

Example 1: Let us use AlgorithmQ to find the conditions for equality in the
inequality

11
p

3

5R + 12r
 1

a
+

1

b
+

1

c
.

Step 1 gives

20x + 53x2 + 12x3 � 44xy
p

3 + 5y2 + 12xy2 � 0.
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Step 2 changes this to an equality.

Step 3 solves for x and y and gets (x, y) =
⇣

1
2 ,

3
p

3
2

⌘
as the only real solution pair

in the fundamental region.
Step 4 gives R = 1, r = 1

2 , and s = 3
p

3
2 .

Step 5 solves the equation x3 � 3
p

3x2 + 9x � 3
p

3 = 0 and finds that the three
roots are all

p
3. Thus, equality only holds for an equilateral triangle.

We already saw in Figure 3 what the regions look like. The boundary of the
inequality regions touched the boundary of the fundamental region at the two

points, (0, 0). and
⇣

1
2 ,

3
p

3
2

⌘
The point (x, y) = (0, 0) represents a degenerate

triangle and (1/2, 3
p

3/2) represents an equilateral triangle.

Example 2:

Many inequalities have the property that equality holds if and only if the triangle
is equilateral. We now give an example of an inequality where this is not the case.
Let us see how Algorithm Q works with the inequality

2r2 +
⇣
3� 4

p
2
⌘

rR +
⇣
10 +

p
2
⌘

R2 �
⇣
5 + 3

p
2
⌘

Rs + 2s2 � 0.

The xy-Form is

2x2 +
⇣
3� 4

p
2
⌘

x + 2y2 �
⇣
5 + 3

p
2
⌘

y +
p

2 + 10 � 0.

After changing this to an equality and solving for
(x, y), we find that the only solution pair in the funda-
mental region is (x, y) = (

p
2� 1,

p
2+1). This gives

rise to R = 1, r =
p

2�1, and s =
p

2+1. Converting
to abc-Form, we find {a, b, c} = {2,

p
2,
p

2}. Scaling,
we see that the only triangle for which equality holds
is a triangle similar to one with sides of lengths 1, 1,
and

p
2. That is, equality occurs if and only if the

triangle is an isosceles right triangle.

In the figure to the right, the blue curve is the bound-
ary of the fundamental region. The inequality region
is yellow and is the regions outside the circle with the
red circumference. The boundaries of the two regions
are tangent at the point (x, y) = (

p
2 � 1,

p
2 + 1),

which is the point corresponding to isosceles right tri-
angles.
The inequality is true because every point in the fun-
damental region lies in the yellow region. The only
time equality holds is at the point where the two
boundaries are tangent. -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

Note. The graphical view of an inequality shows that it is possible to have an
inequality in which equality holds for two (or more) shapes of triangles. Just
create two (or more) regions externally tangent to the hypocycloid bounding the
fundamental region and form the inequality corresponding to the exterior of these
regions.
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Example 3:

Often, the shape of a triangle for which equality holds has sides whose lengths are
very complicated. Mathematica has no problem with expressions involving roots
of polynomials.

Let us consider the following Bonnesen-like inequality, which comes from [23].
Recall that L = 2s.

L2 � 12
p

3K � kr(R� 2r)

First we use Algorithm K to find the largest value of k for which this inequality
is true. Algorithm K tells us that the best value for k is the root of the equation

x3 � 280x2 + 10368x� 62208 = 0

that is closest to 35. Let us call this root k0. Algorithm B confirms that the
inequality

L2 � 12
p

2K � k0r(R� 2r)

is true. We will now use Algorithm Q to determine when equality holds.

The xy-Form (changed to an equality) is

4y2 � 12
p

3xy � k0x(1� 2x) = 0.

The output from the Solve call in Step 3 finds two pairs (x, y) that satisfy the
equality and lie in the fundamental region.

The first solution is

(x, y) =

 
1

2
,
3
p

3

2

!

.

This corresponds to the set of equilateral triangles.

The second solution is
(x, y) = (x2, y2)

where x2 and y2 are given as root expressions. Setting R = 1, r = x2, and s = y2,
we then find that a, b, and c are the roots of the equation

x3 + c2x
2 + c1x + c0 = 0

where c2, c1, and c0 are also given as root expressions. Finally, Mathematica solves
this cubic and gives

(a, b, c) = (1, 1,�)

where � is the largest real root of the equation 31x3 � 28x2 � 16x + 4 = 0.

(((to be fixed))) The t-Form (with a constant factor removed) is

(k0 � 64)t6 + 96
p

3t5 � 7k0t
4 � 96

p
3t3 + 15k0t

2 � 9k0 = 0.

Solving for t, Mathematica finds two real solutions for t larger than 1. One of them,
after simplifying (using RootReduce) is t =

p
3, which we have seen corresponds

to the set of equilateral triangles. The other solution is the largest real root of
the equation

27t6 � 163t4 + 225t2 � 81 = 0.
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Call this value t0. Converting to abc-Form shows that

{a, b, c} = {8t0(t20 � 1), 4t0(t
2
0 + 1), 4t0(t

2
0 + 1)}.

Scaling this shows that the triangle is similar to the triangle with sides 1, 1, and
2(t20 � 1)/(t20 + 1). Simplifying again (using RootReduce) lets us say that the
inequality holds for any triangle similar to the isosceles triangle with sides 1, 1,
and �, where � is the largest real root of the equation 31x3�28x2�16x+4 = 0.

Theorem 2. There exists an inequality that is true for all triangles and a point
where equality holds lies strictly inside the fundamental region.

((( proof to be inserted here )))

Theorem 3. There are homogeneous non-strict inequalities involving polynomial
functions of R, r, and s that are true for all isosceles triangles, but are not true
for all triangles.

Proof. Consider the inequality

400(r2 + s2) + 1027R2 � 80R(r + 16s).

Algorithm B shows that this inequality is false. A plot of a portion of the inequality
region is shown in Figure 5. The boundary of the inequality region is colored red.
The inequality region consists of all points in the plane outside the red oval. This
region is colored yellow. The fundamental region is outlined in blue. Note that the
inequality region has a hole in it that lies inside the fundamental region. This hole
is colored white. Points inside this hole correspond to triangles that do not satisfy
the inequality. But note that every point on the boundary of the fundamental
region satisfies the inequality. Thus, all isosceles triangles satisfy the inequality,
but not all triangles satisfy the inequality. ⇤

0.0 0.2 0.4 0.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 5. Plot of Inequality Region and Fundamental Region

Acknowledgment. I would like to thank Ercole Suppa for finding a simpler
counterexample for use with Theorem 3.
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11. Mistakes in the Literature

The literature on triangle inequalities and identities is so vast that it is inevitable
that some mistakes could get published. While testing Algorithm Blundon, we
ran across a number of errors in the literature. We list below the errors found.

• The inequality 27
Q

(b2 + c2� a2)2  (4K)6 appears in Bottema [4, p. 47]. This
is incorrect as noted in [33]. The correct result is the following.

Theorem 4 (Ono’s Inequality). For any acute triangle,

27
Y

(b2 + c2 � a2)2  (4K)6.

• The inequality 4R(R� 4K/s)3 � (s2/4 + 4K2/s2 � 2R2 � 5KR/s)2 appears in
Bottema [4, p. 71]. This is incorrect. A counterexample is r = 1, s = 24, R = 16.
The correct inequality is given in [20, p. 3–4].

Theorem 5 (Nakajima’s Inequality). For any triangle,

4R

✓
R� 2K

s

◆3

�
✓

s2 +
K2

s2
� 2R2 � 10KR

s

◆2

.

• The inequality
P

1
a(b+c�a) �

r
8R

�
5� 9r

4R+r

�
appears in Crux Mathematicorum

[19, p. 101]. This inequality is dimensionally incorrect and hence false. The correct
inequality is the following.

Theorem 6. For any triangle,
X 1

a(b + c� a)
� 1

8rR

✓
5� 9r

4R + r

◆
.

• The inequality (a2 + b2 + c2)/(ab + bc + ca) � 2R/(R + 2r) appears in the
Romanian Mathematical Magazine [22]. This is incorrect. The correct inequality
is the following.

Theorem 7. For any triangle,

6

5

R

R + 2r
 a2 + b2 + c2

ab + bc + ca
 2R

R + 2r
.

• The inequality a2 + b2 + c2  8R2 + 8K2/(27R2) for all acute triangles appears
in Mitrinovic [20, p. 243]. This is incorrect. The following are correct inequalities.

Theorem 8. For any acute triangle,

a2 + b2 + c2  8R2 +
16K2

27R2
.

Theorem 9. For any acute triangle,

a2 + b2 + c2  17

2
R2 +

8K2

27R2
.

• The inequality
P

m2
a  6R2+

p
3K/6 for all acute triangles appears in Mitrinovic

[20, p. 247]. This is incorrect. The correct inequality is the following.
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Theorem 10. For any acute triangle,
X

m2
a  6R2 +

p
3K/3.

• The inequality
Q

a2 � 4Rr(2R2 + 8Rr + 3r2) for all acute triangles appears in
Mitrinovic [20, p. 248]. This is incorrect. The correct inequality is the following.

Theorem 11. For any acute triangle,
Y

a2 � 4R2r2(2R2 + 8Rr + 3r2).

Ercole Suppa [28] has pointed out a number of errors in Alasia [1]. We used
Algorithm R to correct these identities.

• Alasia [1, Formula 106] claims that
P

a/(rra) = 2(2R+ra)/K. This is incorrect.
A correct identity is the following.

Theorem 12. For any triangle,
X a

rra
=

2(4R + r)

K
.

• Alasia [1, Formula 131] claims that
P

ra = 3R + r
P

cosA. This is incorrect.
The correct identity is the following.

Theorem 13. For any triangle,
X

ra = 3R + R
X

cosA.

• Alasia [1, Formula 406] claims that
P

sinA/
Q

sinA = R/r. This is incorrect.
The correct identity is the following.

Theorem 14. For any triangle,
P

sinAQ
sinA

=
2R

r
.

• Alasia [1, Formula 421] claims that 2
Q

sinA =
P

sin2 A. This is incorrect. A
correct identity is the following.

Theorem 15. For any triangle,

4
Y

sinA =
X

sin 2A.

• Alasia [1, Formula 427] claims that
P

cos 2A = 4 sinA sinB cosC � 1. This is
incorrect. A correct identity is the following.

Theorem 16. For any triangle,
X

sin 2A = 4
Y

sinA.

• Alasia [1, Formula 434] claims that
P

(tanA/ tanB + tanB/ tanA) + 2 =P
sinA. This is incorrect. A correct identity is the following.

Theorem 17. For any triangle,
X✓

tanA

tanB
+

tanB

tanA

◆
+ 2 = � 4

1 +
P

cos 2A
.
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12. Proving Identities

Since the quantities R, r, and s are independent, two symmetric homogeneous
expressions inolving elements of a triangle will be identical if and only if their
R-r-s forms are identical. We can formalize this as Algorithm V.

Algorithm V [Verifying Identities]

INPUT: Input to this algorithm is a conjectured identity involving symmetric
homogeneous rational functions of elements of a triangle.

Step 1 [Convert to R-r-s Form]

Apply Algorithm R to both sides of the conjectured identity.

Step 2 [Compare Sides]

If the two results are identical, return True, else return False.

OUTPUT: Algorithm V returns true or false indicating the correctness of the
conjectured identity.

Example

Theorem 18 (Suppa’s Exradii Identity [27]). In any triangle, the following iden-
tity holds.

(11)
X

ab =
X

ra(rb + r)

Proof. Applying Algorithm R, the left side of (11) is equivalent to r2 + 4rR + s2.
The right side of (11) is also equivalent to r2 + 4rR + s2. Thus, (11) is an
identity. ⇤

13. Proving Inequalities for Special Triangles

The following theorem is well known [4, p. 102].

Theorem 19.
(a) A triangle is acute if and only if s > 2R + r.
(b) A triangle is obtuse if and only if s < 2R + r.
(c) A triangle is a right triangle if and only if s = 2R + r.

This allows us to find inequalities restricted to these classes of triangles.

For example, in Algorithm B, instead of using the code

fundamentalFunction = (x^2+y^2)^2+12x^3-20x*y^2+48x^2-4y^2+64x;
fundamentalRegion = fundamentalFunction<=0 && x>0 && y>0;
truth = Simplify[f[x,y] >= 0, fundamentalRegion];

we can use the following code instead to prove inequalities that are true just for
acute triangles.

fundamentalFunction = (x^2+y^2)^2+12x^3-20x*y^2+48x^2-4y^2+64x;
fundamentalRegion = fundamentalFunction<=0 && x>0 && y>0;
acuteRegion = y>x+2;
truth = Simplify[f[x,y] >= 0, fundamentalRegion && acuteRegion];
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Note that the R-r-s condition s > 2R + r becomes the x-y condition y > x + 2 by
applying the substitutions r ! xR and s! yR, since R 6= 0.

If we plot the line y = x + 2 (in red) on the same set of axes as the fundamental
region, we get the following graph:

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 6. Split of Fundamental Region into Acute and Obtuse Regions

The portion of the fundamental region (green) above the red line corresponds to
acute triangles. The portion below the red line corresponds to obtuse triangles.

An inequality will be true for all acute triangles if the inequality region covers the
portion of the green region above the red line (the acute region).

If using the t-Form, the t condition corresponding to y > x+2 is 4t3+1 > t4+4t2.
Since t > 1, this is equivalent to t2 < 2t + 1 or 1 < t < 1 +

p
2.

Example.

Let us work through proving that the inequality
X

tanA � 3
p

3

is true for all acute triangles using this method.

Applying Algorithm B, we find that the R-r-s Form is

�3
p

3r2 � 2r
�
6
p

3R + s
�

+ 3
p

3 (s2 � 4R2)

r2 + 4rR + 4R2 � s2
� 0.

The x-y polynomial (from Step 5) is
�
x2 + 4x� y2 + 4

� ⇣
�3
p

3x2 � 2xy � 12
p

3x + 3
p

3y2 � 12
p

3
⌘

.

For step 7, we issue the following code:
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fundamentalFunction = (x^2+y^2)^2+12x^3-20x*y^2+48x^2-4y^2+64x;
fundamentalRegion = fundamentalFunction<=0 && x>0 && y>0;
acuteRegion = y>x+2;
inequalityRegion = (4+4x+x^2-y^2)(-12Sqrt[3]-12*Sqrt[3]x

-3Sqrt[3]x^2-2x*y+3Sqrt[3]y^2) >= 0;
Simplify[inequalityRegion, fundamentalRegion && acuteRegion]

The result of the Simplify command is True, which proves the inequality.

Incidentally, if we apply Algorithm Q, we find that amongst all acute triangles,

equality occurs if and only if (x, y) =
⇣

1
2 .

3
p

3
2

⌘
. That is, equality occurs if and

only if the triangle is equilateral.

Had we not known what the best constant was for the right side of the inequality,
we could have applied Algorithm K to the inequality

X
tanA � k.

Step 2 of Algorithm K would be modified by changing fundamentalRegion to
fundamentalRegion && acuteRegion in order to restrict it to acute triangles.
The output from Algorithm K is then 3

p
3, telling us that this is the best possible

constant.

Other shape triangles.

We can prove inequalities for other shape triangles by replacing the fundamental
region by the region formed by intersecting the fundamental region and the region
corresponding to the shape of triangle we are interested in.

Given a condition on a, b, and c, the R-r-s condition is found by applying Al-
gorithm R. The xy-condition is then found using equation set (10) and canceling
R factors.



Stanley Rabinowitz 28

14. Proving Trivariate Inequalities

Algorithm B can be used to prove symmetric homogeneous trivariate inequalities
involving rational functions of x, y, and z subject to the constraints x > 0, y > 0,
and z > 0 by using the following algorithm.

We use the following theorem [5, Section 2] which expresses the correspondence
between positive inequalities and triangle inequalities.

Theorem 20 (The Fundamental Correspondence). Let a, b, c be the sides of
a triangle. Then the inequality f(a, b, c) � 0 is equivalent to the inequality
g(x, y, z) = f(y+z

2 , z+x
2 , x+y

2 ) � 0 for all x, y, z > 0 where

x = b + c� a,

y = c + a� b,

z = a + b� c.

Variables a, b, and c can be expressed in terms of x, y, and z via the equations

a =
y + z

2
,

b =
z + x

2
,

c =
x + y

2
.

Algorithm XYZ [Prove Trivariate Inequality]

INPUT: Input to this algorithm is an inequality involving symmetric homogen-
eous rational functions of x, y, and z subject to the constraints x > 0, y > 0, and
z > 0.

Step 1 [Convert to a, b, c]

Make the following substitutions.

x ! b + c� a,

y ! c + a� b,

z ! a + b� c.

Step 2 [Apply Algorithm B]

By Theorem 20, the resulting inequality is equivalent to the given one with the
constraints a > 0, b > 0, c > 0, a + b > c, b + c > a, c + a > b.

So apply Algorithm B to determine whether the inequality is true or false.

OUTPUT: Algorithm XYZ returns true or false indicating the correctness of the
conjectured identity.
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Application.

We can combine Algorithm K with Algorithm XYZ to find the best k that makes
the following inequality true for all x, y, z > 0.

(12)
x5 + y5 + z5

(xyz)2
�
✓

1

x
+

1

y
+

1

z

◆
� k

✓
x2 + y2 + z2

xyz
�
✓

1

x
+

1

y
+

1

z

◆◆

We get the following result.

Theorem 21. Inequality (12) is true for all x, y, z > 0, whenever

k  1

3

 

8 + 3

r
1

2

⇣
997� 69

p
69
⌘

+ 3

r
1

2

⇣
997 + 69

p
69
⌘!

.
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