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1. Introduction

Consider the following two results.

Result 1

Let ABCD be a cyclic quadrilateral.
Then the incenters of 4BCD,
4ACD, 4ABD, and 4ABC form
a rectangle.

Result 2

Let ABCD be a tangential quadri-
lateral. Then the incenters of the 4
nonoverlapping triangles formed by
the diagonals lie on a circle.

At first glance, these two results seem unrelated. However, the following table
points out their similarities.

component type of central
Result quadrilateral triangles center quadrilateral

1 cyclic half triangles incenter rectangle
2 tangential quarter triangles incenter cyclic quadrilateral

The following definitions are used. A cyclic quadrilateral is a quadrilateral with
a circumcircle. A tangential quadrilateral is a quadrilateral with an incircle. The
diagonals of a convex quadrilateral divide it into four overlapping triangles each
bounded by two sides of the quadrilateral and a diagonal. These are called half
triangles. The diagonals of a convex quadrilateral divide it into four nonoverlap-
ping triangles each bounded by a side of the quadrilateral and parts of the two
diagonals. These are called quarter triangles. The incenter of a triangle is the cen-
ter of the circle inscribed in the triangle. The four incenters form a quadrilateral
called the central quadrilateral. The original quadrilateral is called the reference
quadrilateral. Information about result 1 can be found in [1, p. 133]. Information
about result 2 can be found in [5].

Looking at the table, we note the similarities. In both cases, we started with a
quadrilateral with a special shape. We then considered four component triangles
associated with the quadrilateral (half triangles or quarter triangles). Within each
component triangle, we located a center, namely the incenter. We concluded that
the four centers form the vertices of a quadrilateral that also have a special shape
(rectangle or cyclic quadrilateral).

In this paper, we use a computer to discover similar results. In each case, we
will start with a reference quadrilateral that has a special shape. We then form
four component triangles related to that quadrilateral. Then we locate a triangle
center in each component triangle. These four centers form a quadrilateral known
as the central quadrilateral. Finally, we check to see if the central quadrilateral
has a special shape.
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2. Types of Quadrilaterals Studied

We are only interested in quadrilaterals that have a certain amount of symmetry.
For example, we excluded bilateral quadrilaterals (those with two equal sides),
bisect-diagonal quadrilaterals (where one diagonal bisects another), right kites,
right trapezoids, and golden rectangles. The types of quadrilaterals we studied
are shown in the following table. The sides of the quadrilateral, in order, have
lengths a, b, c, and d. The measures of the angles of the quadrilateral, in order,
are A, B, C, and D.

Types of Quadrilaterals Considered
Quadrilateral Type Geometric Definition Algebraic Condition
general convex none
cyclic has a circumcircle A + C = B + D
tangential has an incircle a + c = b + d
extangential has an excircle a + b = c + d
parallelogram opposite sides parallel a = c, b = d
equalProdOpp product of opposite sides equal ac = bd
equalProdAdj product of adjacent sides equal ab = cd
orthodiagonal diagonals are perpendicular a2 + c2 = b2 + d2

equidiagonal diagonals have the same length
Pythagorean equal sum of squares, adjacent sides a2 + b2 = c2 + d2

kite two pair adjacent equal sides a = b, c = d
trapezoid one pair of opposite sides parallel A + B = C + D
rhombus equilateral a = b = c = d
rectangle equiangular A = B = C = D
Hjelmslev two opposite right angles A = C = 90◦

isosceles trapezoid trapezoid with two equal sides A = B, C = D
APquad sides in arithmetic progression d− c = c− b = b− a

The following combinations of entries in the above list were also considered: bicen-
tric quadrilaterals (cyclic and tangential), exbicentric quadrilaterals (cyclic and
extangential), bicentric trapezoids, cyclic orthodiagonal quadrilaterals, equidiag-
onal orthodiagonal kites, equidiagonal orthodiagonal quadrilaterals, equidiagonal
orthodiagonal trapezoids, harmonic quadrilaterals (cyclic and equalProdOpp), or-
thodiagonal trapezoids, tangential trapezoids, and squares (equiangular rhombi).

So, in addition to the general convex quadrilateral, a total of 27 other types of
quadrilaterals were considered in this study. When checking to see if a central
quadrilateral has one of these shapes, we also considered the following two de-
generate quadrilaterals: a line segment (the four vertices of the quadrilateral are
collinear) and a point (the four vertices coincide).

A graph of the types of quadrilaterals considered is shown in Figure 1. An arrow
from A to B means that any quadrilateral of type B is also of type A. For example:
all squares are rectangles and all kites are orthodiagonal.

3. Centers

In this study, we will place triangle centers in the four component triangles. We
use Clark Kimberling’s definition of a triangle center [7].

A center function is a nonzero function f(a, b, c) homogeneous in a, b, and c and
symmetric in b and c. Homogeneous in a, b, and c means that

f(ta, tb, tc) = tnf(a, b, c)
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Figure 1. Quadrilateral Shapes

for some nonnegative integer n, all t > 0, and all positive real numbers (a, b, c)
satisfying a < b + c, b < c + a, and c < a + b. Symmetric in b and c means that

f(a, c, b) = f(a, b, c)

for all a, b, and c.

A triangle center is an equivalence class x : y : z of ordered triples (x, y, z) given
by

x = f(a, b, c), y = f(b, c, a), z = f(c, a, b).

Tens of thousands of interesting triangle centers have been cataloged in the En-
cyclopedia of Triangle Centers [9]. We use Xn to denote the nth named center in
this encyclopedia.

4. Methodology

We used a computer program called GeometricExplorer to determine the shape
of the central quadrilateral. Starting with each type of quadrilateral listed in
Figure 1 for the reference quadrilateral, and for each n from 1 to 1000, we placed
center Xn in each of the component triangles of the reference quadrilateral. The
program then analyzes the central quadrilateral formed by these four centers and
reports if the central quadrilateral has a special shape. GeometricExplorer uses
numerical coordinates (to 15 digits of precision) for locating all the points. This
does not constitute a proof that the result is correct, but gives us compelling
evidence for the validity of the result.

We then examine the center functions associated with each group of results and
use that to guess at a pattern. Other center functions satisfying that pattern are
then checked and if they too form the same shape central quadrilateral, then we list
the result as a theorem in this paper. We then used exact symbolic computation
using Mathematica to try and give a formal computer proof of the result. If a
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proof is found, we include it with the supplementary material associated with this
paper.

For example, using an arbitrary quadrilateral as the reference quadrilateral, when
we place the center Xn in each of the quarter triangles formed by the diagonals,
the resulting central quadrilateral appears to be a parallelogram for n =2, 3, 4, 5,
20, 140, 376, 382, 546, 547, 548, 549, 550, 631, and 632.

We then compiled a list of the center functions corresponding to each of these
centers. There are multiple possibilities for each center function, since the center
function is not unique. It can be scaled or expressed in various ways using either
algebraic or trigonometric terms. The list is shown in Table 1.

Examining the entries in Table 1, we can make several conjectures. For example,
we can conjecture that whenever the center function is of the form

cosB cosC + k cosA

for some constant k, then the central quadrilateral will be a parallelogram. We
test this conjecture by testing the center function cosB cosC + 7

9
cosA and Geo-

metricExplorer returns the fact that the central quadrilateral is a parallelogram.
We now have strong evidence that the result is true.

In this case, a formal computer proof was found and we list the result later on in
this paper as Theorem 5.1.

Table 1.

n center function
2 cosA + cos(B − C)
3 cosA
4 cosA− cos(B − C)
5 cos(B − C)

20 cosA− cosB cosC
140 2 cosA + cos(B − C)
376 5 cosA + cos(B − C)
381 2 cos(B − C)− cosA
382 cosA− 4 cosB cosC
546 3 cosB cosC − 2 cosA
547 5 cosB cosC + 2 cosA
548 6 cosA− cos(B − C)
549 cos(B − C) + 4 cosA
550 -cos(B − C) + 4 cosA
631 2 cosA + cosB cosC
632 7 cosA + 6 cosB cosC

If a theorem in this paper is accompanied by a figure, this means that the figure
was drawn using either Geometer’s Sketchpad or GeoGebra. In either case, we
used the drawing program to dynamically vary the points in the figure. Noticing
that the result remains true as the points vary offers further evidence that the
theorem is true.
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5. Results for Quarter Triangles

In this configuration, the reference quadrilateral is named ABCD. The two diag-
onals of the quadrilateral divide that quadrilateral into four small nonoverlapping
triangles called quarter triangles. The point of intersection of the diagonals will
be called E. The four triangles (numbered 1 to 4) are shown in Figure 2.

Figure 2. Quarter Triangles

The triangles have been numbered in a counterclockwise order starting with side
AB: 4ABE, 4BCE, 4CDE, 4DAE. Triangle centers are selected in each
triangle. In order, their names are F , G, H, and I.

The raw data collected can be found in Appendix A. Looking for patterns in the
raw data, we found a number of theorems and conjectures which are presented
below.

5.1. General Quadrilaterals.

Theorem 5.1. If the reference quadrilateral is a general quadrilateral, the central
quadrilateral is a parallelogram whenever the chosen center has center function of
the form

cosB cosC + k cosA

for some constant k.

Proof. Let ABCD be the quadrilateral. Let E be the intersection of the diagonals.
Without loss of generality, we can place B at the origin and C at the point with
Cartesian coordinates (1, 0). Then let the coordinates of A, D, and E be as shown
in Figure 3.

Figure 3. Cartesian coordinates for a general quadrilateral
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Using the equations for lines AC and BD, we can find the coordinates of their
intersection point, E. We get

E =

(
aydx

aydx + dy − axdy
,

aydy
aydx + dy − axdy

)
.

Using the Law of Cosines, we can replace the cosines in the center function
cosB cosC + k cosA to get an equivalent function in terms of a, b, and c. This
gives us the 1st trilinear coordinate for the triangle center determined by this
center function in terms of a, b, and c. Multiplying by a gives the 1st barycentric
coordinate. We can clear fractions by multiplying the barycentric coordinates by
the cyclic function 4abc. We then find that the 1st barycentric coordinate for a
point given by this center function is

a4(1− 2k) + 2a2k
(
b2 + c2

)
−
(
b2 − c2

)2
.

Using the formula for the distance between two points in Cartesian coordinates,
we can find the lengths of AB, BC, CD, DA, EA, EB, EC, and ED in terms of
ax, ay, dx, and dy. For example,

DE =

(
ay(dx − 1) + dy − axdy

)√
d2x + d2y

aydx + dy − axdy
.

If the lengths of the sides of a triangle are L1, L2, and L3, and the coordinates of
the vertices are A = (ax, ay), B = (bx, by), and C = (cx, cy), then the point with
barycentric coordinates (t1 : t2 : t3) has Cartesian coordinates

(t1A + t2B + t3C)/(t1 + t2 + t3)

where tA = (tax, tay) and similarly for B and C (the change of coordinates for-
mula).

We can thus find the Cartesian coordinates for point F , the center of 4ABE
corresponding to the given center function. We find that the coordinates of F are(−a2xdyk + ax(aydx + dyk) + ay(dxk + aydy(1− k))

(2k + 1)(aydx + dy − axdy)
,

a2xdx(k − 1) + ax(−aydy − dxk + dx) + ay(aydxk + dy(k + 1))

(2k + 1)(aydx + dy − axdy)

)
.

In the same manner, we can find the coordinates for points G, H, and I, the
centers of triangles 4BCE, 4CDE, and 4DAE.

Using the point slope formula, we can find the slopes of FG, GH, HI, and IF .
A little algebra shows that the slope of FG is the same as the slope of HI and
the slope of GH is the same as the slope of IF . Thus FG ‖ HI and GH ‖ IJ .
Hence, the central quadrilateral FGHI is a parallelogram. �

These computations are straightforward, but very tedious, so best left to Math-
ematica. In the remainder of this paper, if a theorem is stated without a proof,
we refer the reader to the Mathematica notebooks distributed as supplementary
material to this paper. These notebooks contain the full proofs for many of the
theorems in this paper.

Special Cases.

Common centers of the form given in Theorem 5.1 include the centroid (X2),
the circumcenter (X3), the orthocenter (X4), the nine-point center (X5), and the
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de Longchamps point (X20). For some of these, simple geometric proofs can be
found.

Corollary 5.2. Let ABCD be a convex quadrilateral with diagonal point E. Let
F , G, H, and I be the centroids of triangles 4ABE, 4BCE, 4CDE, and
4DAE, respectively. Then FGHI is a parallelogram (Figure 4).

Figure 4. General quadrilateral: centroids =⇒ parallelogram

Proof. Let AI meet BD at P and let AF meet BD at Q. Then AP is a median
of 4ADE and AQ is a median of 4ABE. Thus AI = 2

3
AP and AF = 2

3
AQ

which implies FI ‖ BD. Similarly, GH ‖ BD. So FI ‖ GH. In the same way,
FG ‖ IH. Hence, FGHI is a parallelogram. �

Corollary 5.3. Let ABCD be a convex quadrilateral with diagonal point E. Let
F , G, H, and I be the circumcenters of triangles 4ABE, 4BCE, 4CDE, and
4DEA, respectively. Then FGHI is a parallelogram (Figure 5).

Figure 5. General quadrilateral: circumcenters =⇒ parallelogram
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Proof. The line of centers of two intersecting circles is perpendicular to the com-
mon chord. Thus FG ⊥ BE and HI ⊥ ED. Thus FG ‖ HI. In the same
manner, GH ‖ FI. Hence, FGHI is a parallelogram. �

Corollary 5.4. Let ABCD be a convex quadrilateral with diagonal point E. Let
F , G, H, and I be the orthocenters of triangles 4ABE, 4BCE, 4CDE, and
4DAE, respectively. Then FGHI is a parallelogram (Figure 6).

Figure 6. General quadrilateral: orthocenters =⇒ parallelogram

Proof. Since CH is an altitude of 4CED, we must have CH ⊥ ED. Since CG
is an altitude of 4BEC, we must have CH ⊥ BE. Thus, GH ⊥ BD. Similarly,
FI ⊥ BD. Hence GH ‖ FI. In the same manner, FG ‖ IH. Therefore, FGHI
is a parallelogram. �

Theorem 5.5. All the points with center function of the form

cosB cosC + k cosA

lie on the Euler line.

Proof. The Euler line of a triangle is the line joining the centroid and the circum-
center. According to [9], a center function for the centroid G is cosB cosC+cosA
and a center function for the circumcenter O is cosA.

From [8, p. 28], the equation for the line joining (x1 : y1 : z1) and (x2 : y2 : z2) is

(1)

∣∣∣∣∣∣
x y z
x1 y1 z1
x2 y2 z2

∣∣∣∣∣∣ = 0.

If P is the point with center function cosB cosC +k cosA, then P lies on line OG
because it is easy to verify that∣∣∣∣∣∣

cosB cosC + k cosA cosC cosA + k cosB cosA cosB + k cosC
cosB cosC + cosA cosC cosA + cosB cosA cosB + cosC

cosA cosB cosC

∣∣∣∣∣∣ = 0

because row 1 of the determinant is a linear combination of rows 2 and 3. �

Using the same reasoning, we get the following result.

Theorem 5.6. The center with center function p lies on the line joining the
centers with center functions q and r if p is a linear combination of q and r.
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Theorem 5.7. If the reference quadrilateral is a general quadrilateral, the central
quadrilateral is a parallelogram whenever the chosen center has center function of
the form

cos(B − C) + k cosA

for some constant k.

Proof. From the trigonometric identity

2 cosB cosC = cos(B − C) + cos(B + C),

we see that

cos(B − C) + k cosA = 2 cosB cosC − cos(B + C) + k cosA

= 2 cosB cosC − cos(180◦ − A) + k cosA

= 2 cosB cosC + cosA + k cosA

= 2(cosB cosC + k′ cosA)

where k′ = (k + 1)/2. The result then follows from Theorem 5.1. �

A function f(a, b, c) is a cyclic function in a, b, and c if

f(a, b, c) = f(b, c, a) = f(c, a, b)

for all a, b, and c. Two center functions are said to be equivalent if their ratio is a
cyclic function in a, b, and c. In particular, two center functions are equivalent if
their ratio is a constant. The triangle centers corresponding to equivalent center
functions coincide.

The proof of Theorem 5.7 shows that the center functions cosB cosC + k+1
2

cosA
and cos(B − C) + k cosA are equivalent because

cosB cosC + k+1
2

cosA

cos(B − C) + k cosA
=

1

2

is identically true when A, B, and C are the angles of a triangle.

Conjecture 5.8. If the reference quadrilateral is a general quadrilateral, the cen-
tral quadrilateral is a parallelogram if and only if the center function is equivalent
to cosB cosC + k cosA for some constant k.

Theorem 5.9. If the reference quadrilateral is a general quadrilateral, the central
quadrilateral is orthodiagonal when the center is X1. See Figure 7.

Figure 7. Central Quadrilateral is orthodiagonal
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Proof. Since F is the incenter of 4AEB, this means that EF bisects ∠AEB.
Similarly, EH bisects ∠DEC. Thus, FEH is a straight line. Similarly, IEG is a
straight line. But ∠FEG = ∠FEB +∠BEG = 1

2
∠AEB + 1

2
∠BEC = 1

2
(180◦) =

90◦ and so FH ⊥ GI. �

Conjecture 5.10. If the reference quadrilateral is a general quadrilateral, the
central quadrilateral is orthodiagonal if and only if the center function is 1, that
is, the center is X1.

5.2. Cyclic Quadrilaterals.

Theorem 5.11. If the reference quadrilateral is cyclic, then the central quadri-
lateral is an isosceles trapezoid if the center is X110 (Figure 8).

Figure 8. X110 points =⇒ isosceles trapezoid

Note that in this case, the central quadrilateral is FHGI as opposed to FGHI.

Theorem 5.12. If the reference quadrilateral is cyclic, then FH ⊥ GI when the
center is one of the Vecten points, X485 or X486 (Figures 9 and 10).

Note. Figure 9 suggests that FH and GI pass through E. This is not the case.

Figure 9. X485 points =⇒ FH ⊥ GI
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Figure 10. X486 points =⇒ FH ⊥ GI

Proof. When dealing with cyclic quadrilaterals, it is more convenient to use barycen-
tric coordinates (rather than Cartesian coordinates) because the equation for the
circumcircle of a triangle in barycentric coordinates [13, p. 63] is very simple,
namely

(2) a2yz + b2xz + c2xy = 0.

We set up a barycentric coordinate system using 4ABC as the reference triangle,
so that A = (1 : 0 : 0), B = (0 : 1 : 0) and C = (0 : 0 : 1). Let D have coordinates
(u : v : w). To make ABCD convex, we will assume u > 0, v < 0, and w > 0.
Line AC has equation y = 0 and line BD has equation wx = uz. Using the
formula for the intersection of two lines, we can find the coordinates for point
E, the intersection of the diagonals. See [4] for formulas involving barycentric
coordinates. We get

E = (u : 0 : w).

The coordinate setup is shown in Figure 11.

Figure 11. Barycentric coordinates for a general quadrilateral

When D lies on the circumcircle of 4ABC, parametric equations for D are

u = c2 + ta2

v = −b2t
w = t(c2 + ta2)

where 0 < t < 1. This can be verified by substituting these values into Equation 2.
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This gives us the coordinate setup as shown in Figure 12.

Figure 12. Barycentric coordinates for a cyclic quadrilateral

Now we find the coordinates for F , G, H, and I. Instead of using the change of
coordinates formula, we use the geometric definition of the outer Vecten point,
since this only requires us to do some rotations through 90◦ and some intersections
of lines. This avoids introducing square roots into our formulas. We get

F =
(
−c2

(
a2t(t + 3) + b2t(2t + 3) + 4S(t + 1)

)
+

t
(
a4 − a2

(
b2(t + 2) + 2S(t + 1)

)
+ b4(t + 1) + 2b2S

)
+ c4t(t + 2) :

t
(
a4(t + 1)− a2

(
b2(t + 2) + 2c2(t + 1)

)
+ b4 − b2t

(
c2 + 2S

)
+ c4(t + 1)

)
:

t
(
a4t + a2

(
−2b2t− c2(t− 1)

)
+ b4t− b2c2(t + 1)− c2

(
c2 + 2S(t + 1)

)))
and similar expressions for G, H, and I, where S is twice the area of 4ABC. Fi-
nally, we use the formula that gives the condition for two lines to be perpendicular,
and we find that FH ⊥ GI. These calculations are best done using Mathematica.
A similar calculation provides a proof for the inner Vecten point. �

5.3. Tangential Quadrilaterals.

Theorem 5.13. If the reference quadrilateral is a tangential quadrilateral, then
the central quadrilateral is cyclic if the chosen center has center function 1, i.e.
the center is X1. (Figure 13).

Figure 13. Tangential quadrilateral: incenters =⇒ cyclic

Proof. This is Result 2 in the Introduction. For a geometric proof, see Theorem
20 of [3]. �

Conjecture 5.14. If the reference quadrilateral is a tangential quadrilateral, then
the central quadrilateral is cyclic if and only if the center is X1.
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5.4. Equidiagonal Quadrilaterals.

Theorem 5.15. If the reference quadrilateral is equidiagonal, the central quadri-
lateral is a rhombus if the chosen center has center function of the form

cosB cosC + k cosA

for some constant k.

Theorem 5.15 is illustrated in Figure 14 when the chosen center is the orthocenter.

Figure 14. AC = BD, orthocenters =⇒ rhombus

Corollary 5.16. Let ABCD be an equidiagonal quadrilateral with diagonal point
E. Let F , G, H, and I be the orthocenters of triangles 4ABE, 4BCE, 4CDE,
and 4DAE, respectively. Then FGHI is a rhombus (Figure 14).

Corollary 5.17. Let ABCD be an equidiagonal quadrilateral with diagonal point
E. Let F , G, H, and I be the centroids of triangles 4ABE, 4BCE, 4CDE,
and 4DAE, respectively. Then FGHI is a rhombus.

For this corollary, a simple geometric proof can be given.

Proof. From the proof of Corollary 5.2 (Figure 4), it is easily seen that IP = 1
3
AP

and FQ = 1
3
AQ, so that FI = 1

3
BD. Similarly, FG = 1

3
AC. But since BD = AC,

this implies FI = FG and parallelogram FGHI becomes a rhombus. �

Corollary 5.18. Let ABCD be an equidiagonal quadrilateral with diagonal point
E. Let F , G, H, and I be the circumcenters of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively. Then FGHI is a rhombus (Figure 15).

Figure 15. AC = BD, circumcenters =⇒ rhombus
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Theorem 5.19. If the reference quadrilateral is equidiagonal, the central quadri-
lateral is orthodiagonal whenever the chosen center has center function of the form

b + c

a
+ k.

Also, the diagonals of the central quadrilateral are parallel to the bimedians of the
reference quadrilateral.

Note. A bimedian of a quadrilateral is the line joining the midpoints of two
opposite sides.

Proof. When dealing with equidiagonal quadrilaterals, it is convenient to set up
a coordinate system where the diagonal point of the quadrilateral is at the origin
and one of the diagonals (AC) of the quadrilateral lies along the x-axis. We can
scale the figure so that C lies at (1, 0). Figure 16 shows the coordinates we use,
where ax < 0, bx ≤ 0, by < 0, dx ≥ 0, and dy > 0.

Figure 16. Cartesian Coordinates for an equidiagonal quadrilateral

In order for E to be at the origin, we need the slopes of BE and ED to be the
same. We can ensure that this is the case by setting

dy =
dx · by
bx

.

In order for the quadrilateral to be equidiagonal, we need AC = BD or equiva-
lently (AC)2 = (BD)2. This gives the equation

(1− ax)2 =
(b2x + b2y)(dx − bx)2

b2x
.

Solving for ax and taking the solution that makes ax negative, we find that we
can ensure that the quadrilateral is equidiagonal by setting

ax = 1 +
(dx − bx)

√
b2x + b2y

bx
.

Using (b+c)/a+k as the center function, we can compute the coordinates for F , G,
H, and I. Using the formula for the slope of a line through two points, we find the
slopes of FH and GI. Then (using Mathematica) we find and simplify the product
of these slopes. The result is −1, proving that FGHI is orthodiagonal. �
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Since the Spieker center has center function (b + c)/a, it has the form referenced
by Theorem 5.19 (with k = 0), so we have the following corollary.

Corollary 5.20. Let ABCD be an equidiagonal quadrilateral with diagonal point
E. Let F , G, H, and I be the Spieker centers of 4ABE, 4BCE, 4CDE, and
4DAE, respectively. Then quadrilateral FGHI is orthodiagonal. (Figure 17)

Figure 17. Equidiagonal quadrilateral: Spieker centers =⇒ orthodiagonal

In this case, we have a simple purely geometric proof.

Proof. Let the midpoints of the sides of the quadrilateral be W , X, Y , and Z
as shown. Let the Spieker centers be F , G, H, and I. Let P , Q, R, and S be
the midpoints of AE, BE, CE, and DE, respectively. The Spieker center of a
triangle is the incenter of its medial triangle. Thus, F , G, H, and I are the centers
of the yellow circles in Figure 17. Since Y , S, and Z are midpoints, Y SZ is a
straight line segment and Y Z = 1

2
AC. Similarly, ZW = 1

2
BD, WX = 1

2
AC, and

XY = 1
2
BD.

Since quadrilateral ABCD is equidiagonal, quadrilateral WXY Z is a rhombus.
The diagonals of a rhombus are perpendicular, so WY ⊥ XZ. The diagonals of a
rhombus also bisect the angles at the vertices. Since H is the incenter of 4SY R,
Y H is the angle bisector of ∠SY R. Since YW is also the angle bisector of ∠SY R,
we can conclude that WY passes through H and F . In the same manner, ZX
passes through I and G. Since WY ⊥ XZ, we can conclude that GI ⊥ FH or
that quadrilateral FGHI is orthodiagonal.

Note that in this case, the diagonals of FGHI coincide with the bimedians of
ABCD. �

Since the Nagel point has center function (b + c)/a − 1, we have the following
corollary.

Corollary 5.21. Let ABCD be an equidiagonal quadrilateral with diagonal point
E. Let F , G, H, and I be the Nagel points of 4ABE, 4BCE, 4CDE, and
4DAE, respectively. Then FH ⊥ GI. In other words, quadrilateral FGHI is
orthodiagonal. Furthermore, FH and GI are parallel to the bimedians of quadri-
lateral ABCD. (Figure 18)
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Figure 18. Equidiagonal quadrilateral: Nagel points =⇒ orthodiagonal

Open Question 1. Is there a simple geometric proof for the special case of The-
orem 5.19 when the chosen center is the Nagel point? (Figure 18) Is there a
geometrical proof that in Figure 18, FH ‖ WY ?

Theorem 5.22. All the points with center function of the form

b + c

a
+ k

lie on the Nagel line.

Proof. The Nagel line of a triangle is the line joining the incenter, the centroid,
the Nagel point, and the Spieker center of a triangle. From [9], we find that a
center function for the incenter is I = 1 and a center function for the Spieker
center is S = (b + c)/a. Let P = (b + c)/a + k. Since P = S + kI, P is a linear
combination of I and S and our result follows from Theorem 5.6. �

Theorem 5.23. Let ABCD be an equidiagonal quadrilateral with diagonal point
E. Let F , G, H, and I be the incenters of 4ABE, 4BCE, 4CDE, and 4DAE,
respectively. Then FH and GI are parallel to the bimedians of quadrilateral
ABCD (Figure 19).

Figure 19. AC = BD, incenters, bimedians =⇒ FH ‖ WY
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Theorem 5.24. If the reference quadrilateral is equidiagonal, the central quadri-
lateral is orthodiagonal whenever the chosen center has center function of the form

cosB + cosC − 1− k cosA.

Since the Bevan point has center function cosB + cosC − 1− cosA, we have the
following corollary.

Corollary 5.25. Let ABCD be an equidiagonal quadrilateral with diagonal point
E. Let F , G, H, and I be the Bevan points of 4ABE, 4BCE, 4CDE, and
4DAE, respectively. Then FH ⊥ GI (Figure 20).

Figure 20. AC = BD, Bevan points =⇒ FH ⊥ GI

Theorem 5.26. All the points with center function of the form

cosB + cosC − 1− k cosA

lie on the Bevan line.

Proof. The Bevan line of a triangle (also known as the OI line) is the line joining
the incenter, the circumcenter, and the Bevan point. From [9], we find that a
center function for the circumcenter is O = cosA and a center function for the
Bevan point is B = cosB+cosC−1− cosA. Let P = cosB+cosC−1−k cosA.
Since P = B − (k − 1)O, P is a linear combination of O and P and our result
follows from Theorem 5.6. �
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Theorem 5.27. If the reference quadrilateral is equidiagonal, the central quadri-
lateral is orthodiagonal whenever the chosen center has center function of the form

r

R
+ k cosA.

Proof. Using the rules

(3)

cosA =
b2 + c2 − a2

2bc

cosB =
c2 + a2 − b2

2ca

cosC =
a2 + b2 − c2

2ab

R =
abc

4K

r =
K

s

K =
√
s(s− a)(s− b)(s− c)

s =
a + b + c

2

we can remove A, B, C, r, and R from the expression

cosB + cosC − 1− k cosA
r
R

+ t cosA
.

When t = −(k + 1), the expression simplifies to 1. This means that

cosB + cosC − 1− k cosA and
r

R
+ t cosA

are equivalent center functions. Thus, this theorem follows from Theorem 5.24.
�

Theorem 5.28. If the reference quadrilateral is equidiagonal, the central quadri-
lateral is orthodiagonal whenever the chosen center has center function of the form

r

R
+ k sinB sinC.

5.5. Orthodiagonal Quadrilaterals.

Lemma 5.29. The condition for a triangle center with center function f(x, y, z)
to lie on the angle bisector at vertex A in right triangle ABC (with right angle at
A) is

f(x, y, z) = f(y, x, z)

for all x, y, and z satisfying x2 + y2 = z2.

Proof. Let P be a point on the angle bisector of ∠A in right triangle ABC as
shown in Figure 21. Suppose a center function for P is f(x, y, z) so that the
trilinear coordinates of P are

P =
(
f(a, b, c) : f(b, c, a) : f(c, a, b)

)
.
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Figure 21. P lies on bisector of ∠A in right triangle ABC

The second trilinear coordinate is proportional to the distance from P to AC and
the third trilinear coordinate is proportional to the distance from P to AB. Since
P is on the angle bisector of ∠A, it is equidistant from AC and AB. Thus,

f(b, c, a) = f(c, a, b)

for all a, b, and c satisfying a2 = b2 + c2. But, by definition, a center function is
symmetric in its 2nd and 3rd arguments, so

f(c, a, b) = f(c, b, a)

for all a, b and c. Therefore,

f(b, c, a) = f(c, b, a)

for all a, b and c satisfying a2 = b2 + c2. Switching notation from a, b, c to x, y, z
gives that the condition is that f(x, y, z) = f(y, x, z) for all x, y, and z satisfying
x2 + y2 = z2. �

Theorem 5.30. Let f(x, y, z) be a polynomial center function such that

(4) f(a, b, c)− f(b, a, c) has a2 + b2 − c2 as a factor.

If the reference quadrilateral is orthodiagonal, then the central quadrilateral is
orthodiagonal whenever the chosen center has center function f .

Proof. If Q is the center corresponding to 4AEB, then by Lemma 5.29, EQ
bisects ∠AEB. Similarly, if P is the center corresponding to 4AED, then EP
bisects ∠AED (Figure 22).

Figure 22. orthodiagonal quadrilateral with two angle bisectors
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Then we see that angles 1 and 2 both have measure 45◦, so EQ ⊥ EP . Thus,
the central quadrilateral is orthodiagonal and has the same diagonal point as the
reference quadrilateral. �

Let us call a function f that has the form specified by Theorem 5.30 a normal
center function. We may also say that f is normal.

The following lemma should be obvious.

Lemma 5.31. If f is normal, then so is f + k, where k is a constant. If f is
normal, then so is kf , where k is a constant. If f is normal, then so is fn, where
n is a positive integer. If f and g are normal, then so is f + g.

Proof. Let g = f + k. Then g(a, b, c) − g(b, a, c) = f(a, b, c) − f(b, a, c). Let
E = kf . Then E(a, b, c) − E(b, a, c) = k(f(a, b, c) − f(b, a, c)). If h = fn, note
that h(a, b, c)−h(b, a, c) = f(a, b, c)n−f(b, a, c)n is divisible by f(a, b, c)−f(b, a, c)
which is divisible by a2 + b2 − c2. If F = f + g, note that F (a, b, c)− F (b, a, c) =
f(a, b, c)− f(b, a, c) + g(a, b, c)− g(b, a, c) which is divisible by a2 + b2 − c2. �

Theorem 5.32. If the reference quadrilateral is orthodiagonal, the central quadri-
lateral is orthodiagonal whenever the chosen center has center function of the form

cosB cosC + k

for some constant k.

Proof. By Lemma 5.31, it suffices to prove this for center function cosB cosC.
Applying transformation set (3), we find that cosB cosC is equivalent to the
center function

a4 − (b2 − c2)
2

4a2bc
.

Multiplying this by the cyclic function 4a2b2c2 shows this to be equivalent to the
center function

f(a, b, c) = bc(a4 −
(
b2 − c2

)2
).

A straightfoward calculation shows that

f(a, b, c)− f(b, a, c) = c(a− b)(a + b− c)(a + b + c)
(
a2 + b2 − c2

)
,

which has the factor a2 + b2− c2. Thus, f is normal and the central quadrilateral
is orthodiagonal by Theorem 5.30. �

Theorem 5.33. Let f(x, y, z) be a polynomial center function such that

(5) f(a, b, c) + f(b, a, c) has a2 + b2 − c2 as a factor.

If the reference quadrilateral is orthodiagonal, then the central quadrilateral is
orthodiagonal whenever the chosen center has center function f .

Proof. The proof is the same as the proof of Theorem 5.30 except that a variant
of Lemma 5.29 is used to show when a point lies on the external angle bisector of
the right angle in a right triangle. The details are omitted. �

Using the same proof technique that was used in the proof of Theorem 5.32,
combined with either Theorem 5.30 or Theorem 5.33, we can prove the following
theorem.
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Theorem 5.34. If the reference quadrilateral is orthodiagonal, the central quadri-
lateral is orthodiagonal whenever the chosen center has center function of one of
the following forms.

secA

secB

tanA

sin 2A

cosB cosC

tanB + tanC

secB + secC

secB − secC

cos 2A

cosB + cosC − cosA

1/(cosB + cosC − cosA)

sec 2A

sin 4A

tanB

tanB − tanC

Using these forms combined with Lemma 5.31 shows that the following centers
produce orthodiagonal central quadrilaterals when the given quadrilateral is or-
thodiagonal.

A selection of centers that make the
central quadrilateral orthodiagonal

center center function
X46 cosB + cosC − cosA
X47 cos 2A
X48 tanB + tanC
X73 secB + secC
X90 1/(cosB + cosC − cosA)
X91 sec 2A
X223 secB + secC − secA− 1
X388 cosB cosC + 1
X497 cosB cosC − 1
X563 sin 4A
X610 tanB + tanC − tanA
X652 secB − secC
X656 tanB − tanC
X822 (secB + secC)(secB − secC)

Theorem 5.35. If the reference quadrilateral is orthodiagonal, the central quadri-
lateral is equidiagonal if the chosen center is X151.

Theorem 5.36. If the reference quadrilateral is orthodiagonal, the central quadri-
lateral is cyclic if the chosen center is the symmedian point (X6).
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Proof. When dealing with orthodiagonal quadrilaterals, it is convenient to set up
a coordinate system where the diagonal point of the quadrilateral is at the origin
and the diagonals of the quadrilateral lie along the x- and y-axes. We can scale
the figure so that vertex D lies at (1, 0). Figure 23 shows the coordinates we use,
where ay > 0, bx < 0, and cy < 0.

Figure 23. Cartesian coordinates for an orthodiagonal quadrilateral

Using a as the center function for X6, we can compute the coordinates for F , G,
H, and I. We find that the coordinates for F are

F =

(
bxa

2
y

2(a2y + 2b2x)
,

ayab
2
x

2(a2y + 2b2x)

)
.

Similar expressions are found for the coordinates for G, H, and I. Then we find
the coordinates for P , the intersection of FH and GI. We find

P =

(
bxa

2
yc

2
y(bx + 1)

2
(
b2xc

2
y + a2yc

2
y + a2yb

2
x(1 + c2y)

) , ayb
2
xcy(ay + cy)

2
(
b2xc

2
y + a2yc

2
y + a2yb

2
x(1 + c2y)

)) .

Using the distance formula, we find the lengths of PF , PG, PH, and PI. The
points F , G, H, and I will lie on a circle if PF ·PH = PG·PI (the converse of the
intersecting chords theorem for a circle). A straightforward computation (using
Mathematica) shows this to be true. Hence FGHI is a cyclic quadrilateral. �

Open Question 2.
Is there a purely geometric proof for Theorem 5.36? (Figure 24)

Figure 24. Orthodiagonal quadrilateral: symmedian points =⇒ cyclic

Theorem 5.37. If the reference quadrilateral is orthodiagonal, the central quadri-
lateral is cyclic whenever the chosen center has center function of the form

k cosA + sinA(tanA + tanB + tanC)

for some constant k.
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Note. Examples of centers that have center functions of this form are X389 and
X578.

Theorem 5.38. If the reference quadrilateral is orthodiagonal, the central quadri-
lateral is a rectangle whenever the chosen center has center function of the form

cosA + k cosB cosC

where k is a constant.

For some special cases of this theorem, a simpler geometrical proof is possible.

The centroid has center function cosA+cosB cosC. This is of the form referenced
by Theorem 5.38 when k = 1. We thus have the following corollary.

Corollary 5.39. If the reference quadrilateral is orthodiagonal, the central quadri-
lateral is a rectangle when the chosen center is the centroid (Figure 25).

Figure 25. Orthodiagonal quadrilateral: centroids =⇒ rectangle

Proof. By Theorem 5.2, FGHI is a parallelogram. From the proof of Theorem
5.2, we see that FI ‖ BD and FG ‖ AC. Since BD ⊥ AC, this implies IF ⊥ FG.
But a parallelogram having one angle a right angle must be a rectangle. �

The circumcenter has center function cosA. This is of the form referenced by
Theorem 5.38 when k = 0. We thus have the following corollary.

Corollary 5.40. If the reference quadrilateral is orthodiagonal, the central quadri-
lateral is a rectangle when the chosen center is the circumcenter (Figure 26).

Figure 26. Orthodiagonal quadrilateral: circumcenters =⇒ rectangle

Proof. By Theorem 5.3, FGHI is a parallelogram. From the proof of Theorem 5.3,
we see that FI ⊥ AC and FG ⊥ BD. Since BD ⊥ AC, this implies IF ⊥ FG.
But a parallelogram having one angle a right angle must be a rectangle. �
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We could also have noted that the circumcenter of a right triangle is the mid-
point of the hypotenuse and used that fact to prove that the sides of the central
quadrilateral are parallel to the diagonals of the reference quadrilateral.

The nine-point center has center function cosA+2 cosB cosC. This is of the form
referenced by Theorem 5.38 when k = 2. We thus have the following corollary.

Corollary 5.41. If the reference quadrilateral is orthodiagonal, the central quadri-
lateral is a rectangle when the chosen center is the nine-point center. (Figure 27).

Figure 27. Orthodiagonal quadrilateral: nine-point centers =⇒ rectangle

Proof. Since �F is the nine-point circle of right triangle AEB, it passes through
the foot of the altitude from B to AE, which is point E. It also passes through the
midpoint of AE. In the same way, �I passes through E and the midpoint of AE.
Thus, AE is the common chord between these two circles which implies that the
line of centers, FI is perpendicular to AC. Similarly, FG ⊥ BD, GH ⊥ AC, and
HI ⊥ BD. Since AC ⊥ BD, this implies that FG ⊥ GH, GH ⊥ HI, HI ⊥ IF ,
and IF ⊥ FG, making FGHI a rectangle. �

5.6. Hjelmslev Quadrilaterals.

Theorem 5.42. If the reference quadrilateral is a Hjelmslev quadrilateral, the
central quadrilateral is orthodiagonal whenever the chosen center has center func-
tion of the form

tan(2B) + tan(2C) + k tan(2A)

for some constant k.

Theorem 5.43. If the reference quadrilateral is a Hjelmslev quadrilateral, then
the central quadrilateral is a trapezoid when the chosen center is the Prasolov point
(X68). See Figure 28.

Figure 28. Prasolov points =⇒ FI ‖ HG ‖ BD
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5.7. Parallelograms.

Lemma 5.44 (The Parallelogram Lemma). Let ABCD be a parallelogram and let
E be the intersection of the diagonals. Let P be a triangle center of 4BEC and
let Q be the corresponding triangle center of 4DEA. Then PQ passes through E
and PE = QE. (Figure 29)

Figure 29.

Proof. Note that triangles BEC and DEA are congruent. Under the congruence
transformation that maps 4BEC into 4DEA, P will get mapped into Q. Since
E is the center of the congruence transformation, this means PQ will pass through
E. Congruence preserves lengths, so PE = QE. �

Theorem 5.45. For any triangle center, if the reference quadrilateral is a paral-
lelogram, then the central quadrilateral is a parallelogram. The sides of the central
quadrilateral are parallel to the diagonals of the reference quadrilateral. The two
quadrilaterals have the same diagonal point. (Figure 30)

Figure 30. parallelogram =⇒ parallelogram

Proof. By the Parallelogram Lemma, E is the midpoint of GI. Similarly, E is the
midpoint of FH. Since the diagonals of quadrilateral FGHI bisect each other,
FGHI must be a parallelogram. �

Theorem 5.46. If the reference quadrilateral is a parallelogram, the central quadri-
lateral is a rhombus if the chosen center is the incenter (X1) or one of the Vecten
points (X485 or X486).
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5.8. Kites.

Lemma 5.47 (The Isosceles Triangle Lemma). Let ABC be an isosceles triangle
(with AB = AC) and let D be the midpoint of BC. Let P be a triangle center of
4ABD and let Q be the corresponding triangle center of 4ACD. Then PQ||BC,
PQ ⊥ AD, and PQ is bisected by AD.

Proof. Note that AD ⊥ BC. Under the congruence transformation that maps
4ABD into 4ACD, Q will be the reflection of P about AD (and PQ is bisected
by AD). Thus PQ ⊥ AD which implies PQ||BC. �

Theorem 5.48. For any triangle center, if the reference quadrilateral is a kite,
then the central quadrilateral is an isosceles trapezoid. The parallel sides of the
trapezoid are parallel to one of the diagonals of the reference quadrilateral and are
bisected by the other diagonal (Figure 31).

Figure 31. kite =⇒ isosceles trapezoid

Proof. Triangle DAC is isosceles, so by the Isosceles Triangle Lemma (Lemma
5.47), HI||AC. Similarly, FG||AC, so FGHI is a trapezoid. Also by the Isosceles
Triangle Lemma, ED bisects HI. From the fact that H and I are equidistant
from BD, and F and G are equidistant from BD, we can conclude that GH = FI
and the trapezoid is isosceles. �

Theorem 5.49. If the reference quadrilateral is a kite, the central quadrilateral
is a square if the chosen center is the incenter (X1) or one of the Vecten points
(X485 or X486).

Note. There are many other centers for which the central quadrilateral is a
square.
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5.9. Rhombi.

Theorem 5.50. For any triangle center, if the reference quadrilateral is a rhom-
bus, then the central quadrilateral is a rectangle. The two quadrilaterals have the
same diagonal point. The sides of the rectangle are parallel to diagonals of the
rhombus and are bisected by them (Figure 32).

Figure 32. rhombus =⇒ rectangle

Proof. By Theorem 5.48, the central quadrilateral must be an isosceles trape-
zoid. By Theorem 5.45, the central quadrilateral must be a parallelogram. But
a quadrilateral that is both an isosceles trapezoid and a parallelogram must be a
rectangle. �

5.10. Isosceles Trapezoids.

Theorem 5.51. For any triangle center, if the reference quadrilateral is an isosce-
les trapezoid, then the central quadrilateral is a kite. The two quadrilaterals have
the same diagonal point. One diagonal is parallel to the parallel sides of the trape-
zoid. (Figure 33)

Figure 33. isosceles trapezoid =⇒ kite

Proof. Note that 4AED and 4BEC are isosceles triangles. All triangle centers
of an isosceles triangle lie on the altitude to the base. We can conclude that G
and I lie on the perpendicular bisector of BC (which passes through E). Now
note that 4AEB ∼= 4DEC. One triangle is the mirror image of the other when
reflected about the perpendicular bisector of BC. Under the reflection that maps
4AEB into 4DEC, F will get mapped into H. Thus, GI is the perpendicular
bisector of FH. Hence, FI = HI and FG = HG which means that quadrilateral
FGHI is a kite. �
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5.11. Rectangles.

Theorem 5.52. For any triangle center, if the reference quadrilateral is a rec-
tangle, then the central quadrilateral is a rhombus. The two quadrilaterals have
the same diagonal point. The sides of the rhombus are parallel to diagonals of the
rectangle and are bisected by them (Figure 34).

Figure 34. rectangle =⇒ rhombus

Proof. A rectangle can be considered to be an isosceles trapezoid in two different
ways. Thus, this result follows from Theorem 5.51 since both quadrilaterals FGHI
and GHIF are kites. �

5.12. Squares.

Theorem 5.53. For any triangle center, if the reference quadrilateral is a square,
then the central quadrilateral is a square (Figure 35).

Figure 35. square =⇒ square

Proof. By Theorem 5.52, the central quadrilateral must be a rhombus. By Theo-
rem 5.50, the central quadrilateral must be a rectangle. But a quadrilateral that
is both a rhombus and a rectangle must be a square. �

Theorem 5.54. Let ABCD be a square with diagonal point E. Let F be the
reflection of the incenter of 4ABE about the Feuerbach point of 4ABE (X80).
Define G, H, and I similarly using triangles 4BCE, 4CDE, and 4DAE. Then
quadrilateral FGHI is congruent to ABCD.

The same result holds for the Bevan point (X40) and its isogonal conjugate (X84).
See Figure 36. This is also an example where the vertices of the reference quadri-
lateral and the central quadrilateral lie on the same circle.

Figure 36. square: Bevan points =⇒ congruent square
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6. Results for Half Triangles

In this configuration, the reference quadrilateral is named ABCD. Each diagonal
of the quadrilateral divides the quadrilateral into two triangles. Since there are
two diagonals, a total of four triangles are formed. The four triangles (numbered
1 to 4) are shown in Figure 37.

Figure 37. Half Triangles

The triangles have been numbered so that triangle 1 is opposite vertex A, triangle
2 is opposite vertex B, etc. The four triangles are 4BCD, 4ACD, 4ABD, and
4ABC. Triangle centers are selected in each triangle. In order, their names are
E, F , G, and H.

The raw data collected can be found in Appendix B. Looking for patterns in the
raw data, we found a number of theorems and conjectures which are presented
below.

6.1. General Quadrilaterals.

Conjecture 6.1. If the reference quadrilateral is a general quadrilateral, ABCD,
there is no center function such that the central quadrilateral is a cyclic quadri-
lateral for all quadrilaterals ABCD.

Conjecture 6.2. If the reference quadrilateral is a general quadrilateral, ABCD,
there is no center function such that the central quadrilateral is a rectangle for all
quadrilaterals ABCD.

Theorem 6.3. If the reference quadrilateral is a general quadrilateral and the cho-
sen center is X2, then the central quadrilateral is similar to the reference quadri-
lateral. The ratio of similitude is 3 (Figure 38).

Figure 38. centroids =⇒ EFGH ∼ ABCD
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Proof. Let M be the midpoint of BC. Then AM and DM are medians and
DM/EM = 3 and AM/HM = 3. Therefore, in4AMD, we must have HE ‖ AD
and AD/HE = 3. Similarly, we have the same ratio and parallelism for EF , FG,
and GH. Thus, the sides of quadrilateral ABCD are 3 times the corresponding
sides of quadrilateral EFGH. The parallelism implies that the angles of the two
quadrilaterals are equal. Since the sides are in proportion and the angles are
equal, the two quadrilaterals must be similar. �

Theorem 6.4. If the reference quadrilateral is a general quadrilateral and the cho-
sen center is X4, then the central quadrilateral has the same area as the reference
quadrilateral (Figure 39).

Figure 39. orthocenters =⇒ [ABCD] = [EFGH]

Open Question 3. Is there a purely geometric proof of Theorem 6.4? (Figure 39)

Conjecture 6.5. If the reference quadrilateral is a general quadrilateral, ABCD,
then X2 is the only center such that the central quadrilateral is similar to the
reference quadrilateral for all quadrilaterals ABCD.

Conjecture 6.6. If the reference quadrilateral is a general quadrilateral, ABCD,
then X4 is the only center such that the central quadrilateral has the same area as
the reference quadrilateral for all quadrilaterals ABCD.

6.2. Cyclic Quadrilaterals.

Theorem 6.7. If the reference quadrilateral is cyclic, then the central quadrilat-
eral is a rectangle when the chosen center is X1.

Proof. This theorem is the same as Result 1 in the Introduction. A proof can be
found in [1, p. 133]. �

Theorem 6.8. If the reference quadrilateral is cyclic, then the central quadrilat-
eral is a rectangle when the center function is of the form

cosB + cosC + k cosA− 1

where k is a constant.

The Bevan point of a triangle has center function cosB + cosC − cosA− 1. This
gives us the following corollary.



162 The Shape of Central Quadrilaterals

Figure 40. Bevan points =⇒ rectangle

Corollary 6.9. Let ABCD be a cyclic quadrilateral. Let E, F , G, and H be the
Bevan points of triangles 4BCD, 4CDA, 4DAB, and 4ABC, respectively.
Then EFGH is a rectangle. (Figure 40)

Open Question 4. Is there a purely geometric proof of Theorem 6.9? (Figure 40)

Theorem 6.10. If the reference quadrilateral is cyclic, then the central quadri-
lateral degenerates to a line segment when the chosen center is X155. (Figure 41)

Figure 41. X155 points =⇒ line

Theorem 6.11. If the reference quadrilateral is cyclic, then the central quadri-
lateral is cyclic when the center function is of the form

cosB cosC + k cosA

where k is a constant.

Theorem 6.12. If the reference quadrilateral is cyclic, then the central quadrilat-
eral is cyclic for the following common centers: the centroid, the orthocenter, the
nine-point center, the first and second Fermat points, the first and second isody-
namic points, the de Longchamps point, the Far-Out point, the Tarry point, and
the Steiner point.

One case of Theorem 6.12 is shown in Figure 42.

Figure 42. 1st isodynamic points =⇒ circle
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Note. When the center is the orthocenter, the central quadrilateral is congruent
to the reference quadrilateral (Figure 43). See [10, p. 209] for a proof.

Figure 43. orthocenters =⇒ congruent quadrilaterals

Open Question 5. Are there purely geometric proofs for the results given in
Theorem 6.12?

The centroid case follows from Theorem 6.3.

Although Theorem 6.12 can be proven using barycentric coordinates, it is also
possible to prove the results using complex numbers. We give an example using
X20, the de Longchamps point. We start with a Lemma from [10, p. 162].

Lemma 6.13. The four complex numbers p, q, r, and s are the consecutive ver-
tices of a cyclic quadrilateral (or are collinear) in the complex plane if and only if

(p− s)(r − q)

(p− q)(r − s)
∈ R.

Theorem 6.14. If the reference quadrilateral is cyclic, then the central quadri-
lateral is cyclic if the chosen center is the de Longchamps point.

Proof. Assume that the circumcircle O of the quadrilateral ABCD is the origin
of the complex plane. Let a, b, c, d be the complex coordinates (affixes) of the
vertices A, B, C, D. Since ABCD is cyclic we have that the cross ratio

(a, b, c, d) =
(a− b)(c− d)

(a− d)(c− b)

is a real number. The complex coordinates f, g, h, i of the orthocenters F,G,H, I
of the half triangles 4BCD, 4ACD, 4ABD, 4ABC are ([10, p. 122])

f = b + c + d

g = a + c + d

h = a + b + d

i = a + b + c.

Since X20, the de Longchamps point, is the reflection of X4 in X3 = 0, we have

f = −(b + c + d)

g = −(a + c + d)

h = −(a + b + d)

i = −(a + b + c).

A little calculation shows that

(f, g, h, i) = (a, b, c, d) ∈ R,
so f, g, h, i are concyclic. �
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Open Question 6. Characterize those centers that yield cyclic central quadrilat-
erals when the reference quadrilateral is cyclic.

6.3. EqualProdOpp Quadrilaterals.

Theorem 6.15. If the reference quadrilateral is equalProdOpp, then the central
quadrilateral is also equalProdOpp for the following centers: X3, X5, X15.

This theorem is illustrated in Figure 44 using 1st isodynamic points (X15).

Figure 44. X15 centers, AD ·BC = AB · CD =⇒ EF ·GH = FG ·HE

Open Question 7. Are there purely geometric proofs for the results given in
Theorem 6.15?

6.4. Orthodiagonal Quadrilaterals.

Theorem 6.16. If the reference quadrilateral is orthodiagonal, the central quadri-
lateral is orthodiagonal whenever the chosen center has center function of the form

cosB cosC + k cosA

for some constant k. In this case, the diagonals of EFGH are parallel to the
diagonals of ABCD.

6.5. Trapezoids.

Theorem 6.17. If the reference quadrilateral is a trapezoid, the central quadri-
lateral is a trapezoid whenever the chosen center has center function of the form

cosB cosC + k cosA

for some constant k.

This theorem is illustrated in Figure 45 using de Longchamps points (X20), which
have center function cosB cosC − cosA.

Figure 45. de Longchamps points: AD ‖ BC =⇒ EH ‖ FG
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6.6. Tangential Quadrilaterals.

Theorem 6.18. If the reference quadrilateral is tangential, then the central quadri-
lateral is also tangential for the following centers: X3, X5.

This theorem is illustrated in Figure 46 using circumcenters.

Figure 46. Tangential quadrilateral: circumcenters =⇒ tangential

Open Question 8. Are there purely geometric proofs for the results given in
Theorem 6.18?

6.7. Equidiagonal Orthodiagonal Quadrilaterals.

Theorem 6.19. If the reference quadrilateral is equidiagonal and orthodiagonal,
then the central quadrilateral is also equidiagonal and orthodiagonal for the fol-
lowing centers: X51, X373.

Theorem 6.20. If the reference quadrilateral is equidiagonal and orthodiagonal,
then the central quadrilateral degenerates to a line segment when the center is
X642.

Theorem 6.21. If the reference quadrilateral is equidiagonal and orthodiagonal,
then the central quadrilateral is orthodiagonal (but not equidiagonal) when the
center is the inner Vecten point, X486 (Figure 47).

Figure 47. inner Vecten pts., AC = BD,AC ⊥ BD =⇒ FH ⊥ EG
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6.8. Isosceles Trapezoids.

Theorem 6.22. If the reference quadrilateral is an isosceles trapezoid, then the
central quadrilateral is also an isosceles trapezoid (Figure 48).

Figure 48. isosceles trapezoid =⇒ isosceles trapezoid

Proof. Let P and Q be the midpoints of AD and BC. Note that triangles 4ABC
and 4DCB are congruent. One is the reflection of the other about PQ. Under
this reflection, H maps to E, so HE ⊥ PQ which means HE ‖ BC. Similarly,
FG ‖ BC. Thus, EFGH is a trapezoid. Segment EF maps to HG under this
reflection. Since reflection preserves distances, EF = HG. Therefore, EFGH is
an isosceles trapezoid. �

Theorem 6.23. If the reference quadrilateral is an isosceles trapezoid, then the
central quadrilateral is a rectangle for the following centers: X40, X165.

6.9. Cyclic Orthodiagonal Quadrilaterals.

Theorem 6.24. If the reference quadrilateral is cyclic and orthodiagonal, then
the central quadrilateral degenerates to a line segment when the center is X63.
(Figure 49)

Figure 49. X63 points =⇒ line
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6.10. Hjelmslev Quadrilaterals.

Theorem 6.25. If the reference quadrilateral is Hjelmslev, then the central quadri-
lateral is a parallelogram when the center is X53.

Theorem 6.26. If the reference quadrilateral is Hjelmslev, then the central quadri-
lateral degenerates to a line segment when the center is X97.

6.11. Kites.

Theorem 6.27. If the reference quadrilateral is a kite, then the central quadri-
lateral is a (not necessarily convex) kite (Figure 50).

Figure 50. kite =⇒ kite

Proof. Label the kite so that AB = AD and CB = CD (Figure 51).

Figure 51. central kite need not be convex

Let AC meet BD at Q. The diagonals of a kite are perpendicular, so AC ⊥ BD.
A center of an isosceles triangle must lie on the altitude to the base, so centers
E and G lie on AC. Let FH meet AC at P . Note that P can lie anywhere on
the line through A and C, and is not necessarily located as shown in Figure 51.
Note also that quadrilateral EFGH could be convex as shown in Figure 50 or
nonconvex as shown in Figure 51.

By the Isosceles Triangle Lemma (Lemma 5.47), FH ⊥ AC and PH = PF . Thus
4PEH ∼= 4PEF , so EH = EF . Similarly, 4PGH ∼= 4PGF , so GH = GF .
Thus, quadrilateral EFGH is a kite. �
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6.12. Parallelograms.

Theorem 6.28. If the reference quadrilateral is a parallelogram, then the central
quadrilateral is also a parallelogram (Figure 52).

Figure 52. parallelogram =⇒ parallelogram

Proof. Let P be the intersection of the diagonals of the reference quadrilateral
ABCD. Note that triangles ABD and CDB are congruent. Under the congruence
transformation that maps 4ABD into 4CDB, E will get mapped into G. Since
P is the center of the congruence transformation, this means EG will pass through
P . Congruence preserves lengths, so EP = PG (Figure 52). Similarly, HP = PF .
Since the diagonals of quadrilateral EFGH bisect each other, this means that
quadrilateral EFGH is a parallelogram. �

Theorem 6.29. If the reference quadrilateral is a parallelogram, then the central
quadrilateral is a rhombus when the center is X10, X639, X640, X641, or X642.
(Figure 53 shows the case for X10)

Figure 53. parallelogram and X10 points =⇒ rhombus

Open Question 9. Is there a purely geometrical proof to the special case of
Theorem 6.29 shown in Figure 53 where the chosen center is the Spieker center?

6.13. Rhombi.

Theorem 6.30. If the reference quadrilateral is a rhombus, then the central
quadrilateral is also a rhombus (Figure 54).

Figure 54. rhombus =⇒ rhombus
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Proof. A center of an isosceles triangle must lie on the altitude to the base. Thus,
E and G lie on AC and F and H lie on BD. Thus, the diagonals of EFGH lie
along the diagonals of ABCD. The diagonals of ABCD are perpendicular, so the
diagonals of EFGH are also perpendicular. This, combined with Theorem 6.28,
implies that EFGH is a rhombus. �

Theorem 6.31. If the reference quadrilateral is a rhombus, then the central
quadrilateral is a square when the center is the Weill point (X354).

6.14. Rectangles.

Theorem 6.32. If the reference quadrilateral is a rectangle, then the central
quadrilateral is a rectangle (Figure 55).

Figure 55. rectangle =⇒ rectangle

Proof. Note that triangles4ABC and4DCB are congruent. Under the reflection
that maps4ABC into4DCB, H will get mapped into E and HE will be parallel
to BC. Similarly, GF ‖ AD, GH ‖ AB, and FE ‖ DC. Thus, EFGH is a
rectangle. �

6.15. Squares.

Theorem 6.33. If the reference quadrilateral is a square, then the central quadri-
lateral is a square (Figure 56).

Figure 56. square =⇒ square

Proof. By Theorem 6.28, EFGH must be a parallelogram. By Theorem 6.27,
EFGH must be a kite. But any parallelogram that is also a kite must be a
square. �
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7. Areas for future research

There are many avenues for future investigation.

Generalizing the center.

Instead of placing a triangle center in each component triangle, there may be
other types of points that can be used. For example, consider the following result
which comes from [12]. See also [6] for generalizations.

Theorem 7.1. Let ABCD be an equidiagonal quadrilateral with diagonal point
E. Locate points F , G, H, and I inside triangles 4ABE, 4BCE, 4CDE,
and 4DAE, so that triangles 4ABF , 4BCG, 4CDH, and 4DAI are similar
isosceles triangles. Then FGHI is an orthodiagonal quadrilateral. (Figure 57)

Figure 57. AC = BD =⇒ FH ⊥ GI

Using different component triangles.

There are many ways of forming four component triangles from a given quadrilat-
eral besides using quarter triangles or half triangles. For example, if the quadrilat-
eral is ABCD, we could pick a point P inside the quadrilateral and then consider
the four component triangles 4ABP , 4BCP , 4CDP , and 4DAP .

For example consider the following result due to Dao [2].

Theorem 7.2. Let ABCD be a tangential quadrilateral. Let E be a point inside
the quadrilateral such that AE = CE and BE = DE. Let F , G, H, and I be the
incenters of triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively. Then
FGHI is a cyclic quadrilateral. (Figure 58)

Figure 58. ABCD tangential, AE=CE, BE=DE =⇒ FGHI concyclic
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There are many other interesting points associated with a quadrilateral. For
example, we could specify that E is the centroid, Poncelet point, or Steiner point
of the quadrilateral. If the quadrilateral is cyclic, we could specify that E is the
anticenter.

We could even ask if there are any properties when E is an arbitrary point inside
the quadrilateral. For example, we have the following result found by computer.

Theorem 7.3. Let ABCD be an equidiagonal quadrilateral. Let E be an arbitrary
point inside the quadrilateral. Let F , G, H, and I be the centroids of triangles
4ABE, 4BCE, 4CDE, and 4DAE, respectively. Then FGHI is a rhombus.
(Figure 59)

Figure 59. Equidiagonal quadrilateral, centroids =⇒ rhombus

Another possibility is to use the four triangles determined by the sides of the
reference quadrilateral taken three at a time.

Using different centers.

Instead of placing the same center in each of the four component triangles, we
might try placing different centers in each triangle, or different centers in each
pair of triangles. For example, the following result was found by computer.

Theorem 7.4. Let ABCD be a tangential quadrilateral. Let E be the incenter
of 4BCD. Let F be the centroid of 4ACD. Let G be the incenter of 4ABD.
Let H be the centroid of 4ABC. Then EFGH is an orthodiagonal quadrilateral
(Figure 60).

Figure 60. Tangential quad., incenters/centroids =⇒ EG ⊥ FH
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Checking for other properties.

After we have placed points inside four component triangles, we can ask other
questions about the central quadrilateral besides asking about its shape. We
can compare the central quadrilateral with the reference quadrilateral and ask
questions like “are they similar?”, “are they congruent?”, “do they have the same
centroid?”, “are they homothetic?”, “are they in perspective?”, “do they have the
same area?”, etc.

Here is an example found by computer.

Theorem 7.5. Let ABCD be a rhombus with diagonal point E. Let F , G, H and
I be the Bevan point (X40) of triangles 4ABE, 4BCE, 4CDE, and 4DAE,
respectively. Then quadrilaterals ABCD and FGHI have the same area and
perimeter (Figure 61).

Figure 61. Rhombus: Bevan points =⇒ same area and perimeter

We could also ask if a certain center of the reference quadrilateral coincides with a
center of the central quadrilateral. Here, “center” refers to some well-known point
associated with a quadrilateral, such as the centroid, Poncelet point, Steiner point,
anticenter, etc.

There are lots of interesting results still waiting to be discovered!
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Appendix A. Raw Data for Quarter Triangles

Theorem A.1. For a general quadrilateral,
(a) The central quadrilateral is orthodiagonal if n = 1.
(b) The central quadrilateral is a parallelogram if n =2-5, 20, 140, 376, 381-382,
546-550, 631-632.

No additional results were obtained for the following types of quadrilaterals:

• APquad
• bicentric
• equalProdAdj
• equalProdOpp
• exbicentric
• extangential
• harmonic
• Pythagorean
• tangential trapezoid
• trapezoid

Theorem A.2. For a cyclic quadrilateral,
(excluding results for a general quadrilateral)
(a) The central quadrilateral is an isosceles trapezoid if n = 110.
(b) The central quadrilateral is orthodiagonal if n =485-486.

Theorem A.3. For an equidiagonal quadrilateral,
(excluding results for a general quadrilateral)
(a) The central quadrilateral is orthodiagonal if n =8, 10, 40, 165, 355, 551, 946,
962.
(b) The central quadrilateral is a rhombus if n =2-5, 20, 140, 376, 381-382, 546-
550, 631-632.

Theorem A.4. For an orthodiagonal quadrilateral,
(excluding results for a general quadrilateral)
(a) The central quadrilateral is orthodiagonal if n =46-48, 73, 90-91, 163, 223,
226, 282, 284, 336, 380, 388, 485-486, 493-494, 497, 563, 579-581, 610, 652,
656, 820, 822, 836, 920-921, 944-951.
(b) The central quadrilateral is equidiagonal if n =151.
(c) The central quadrilateral is cyclic if n =6, 51, 54, 67, 70, 74, 125, 130, 184-
185, 217, 287-288, 296, 389, 578, 686, 973-974.
(d) The central quadrilateral is equidiagonal, orthodiagonal if n =102, 109, 117,
124.
(e) The central quadrilateral is a rectangle if n =2, 3, 5, 20 , 22-23, 95, 97,
122-123, 127, 131, 140, 175, 216, 233, 253, 268, 280, 339, 347, 376, 381-382,
401-402, 408, 417-418, 426, 440, 441, 454, 464-466, 546-550, 577, 631-632, 828,
852, 856, 858, 925.
(f) The central quadrilateral degenerates to a point for all centers that occur at
the vertex of the right angle in a right triangle.

Theorem A.5. For an isosceles trapezoid,
(excluding results for an equidiagonal quadrilateral)
(excluding results for a cyclic quadrilateral)
(excluding results for trapezoid)
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(a) The central quadrilateral is a kite if n =1, 6, 8-12, 14,15, 17-19, 21-22, 29,
33, 35, 37-42,45, 47-48 and many more.

Theorem A.6. For an orthodiagonal trapezoid,
(excluding results for a trapezoid)
(excluding results for an orthodiagonal quadrilateral)
(a) The central quadrilateral is orthodiagonal if n = 1, 48, 73, 223, 226, 282, 284,
336, 371, 380, 388, 485, 493, 497, 581, 610, 820, 836, 944-951.
(b) The central quadrilateral is an equidiagonal quadrilateral if n = 151.
(c) The central quadrilateral is Hjelmslev if n =6, 51, 54, 67, 70, 74, 125, 130,
184-185, 217, 287-288, 296, 389, 578, 686, 973-974.
(d) The central quadrilateral is an equidiagonal, orthodiagonal quadrilateral if
n =102, 124.

Theorem A.7. For a parallelogram,
(excluding results for a trapezoid)
(excluding results for Pythagorean)
(excluding results for extangential)
(a) The central quadrilateral is a parallelogram for all n.

Theorem A.8. For a tangential quadrilateral,
(excluding results for a general quadrilateral)
(a) The central quadrilateral is cyclic orthodiagonal if n = 1.

Theorem A.9. For a Hjelmslev quadrilateral,
(excluding results for a cyclic quadrilateral)
(excluding results for a Pythagorean quadrilateral)
(a) The central quadrilateral is orthodiagonal if n =48, 91, 563.
(b) The central quadrilateral is a trapezoid if n =68, 155, 317, 577.

Theorem A.10. For a kite,
(excluding results for an orthodiagonal quadrilateral)
(excluding results for a tangential quadrilateral)
(excluding results for an extangential quadrilateral)
(excluding results for a Pythagorean quadrilateral)
(excluding results for an equalProdOpp quadrilateral)
(excluding results for an equalProdAdj quadrilateral)
(a) The central quadrilateral is an equidiagonal orthodiagonal trapezoid if n =1,
46-48, 73, 90-91, 102, 109, 117, 124, 163, 223, 226, 282, 284, 336, 380, 388,
485-486, 493-494, 497, 563-564, 579-581, 610, 652, 656, 820, 822, 836, 920-921,
944-951.
(b) The central quadrilateral is an isosceles trapezoid if n=6-18, and many more.
(c) The central quadrilateral is a rectangle if n =2, 3, 5, 20, 22-23, 95, 97, 122-
123, 127, 131, 140, 175, 216, 233, 253, 268, 280, 339, 347, 376, 381-382, 401-402,
408, 417-418, 426, 440-441, 454, 464-466, 546-550, 577, 631-632, 828, 852, 856,
858, 925.

Theorem A.11. For a rhombus,
(excluding results for a parallelogram)
(excluding results for a tangential trapezoid)
(excluding results for a kite)
(excluding results for an orthogonal trapezoid)
(a) The central quadrilateral is a square if n =1, 46-48, 73, 90-91, 102, 109, 117,
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124, 163, 223, 226, 282, 284, 336, 380, 388, 485-486, 493-494, 497, 563, 564,
579-581, 610, 652, 656, 820, 822, 836, 920-921, 944-951.
(b) The central quadrilateral is a rectangle if n=2-3, 5-18, 20-23, 31-32, 35-52,
54-63, 65, 67, 69-89, 94-101, and many more.

Theorem A.12. For an equidiagonal orthodiagonal quadrilateral,
(excluding results for an equidiagonal quadrilateral)
(excluding results for an orthodiagonal quadrilateral)
(a) The central quadrilateral is orthodiagonal if n =1, 8, 10, 40, 46-48, 63, 73, 84,
90-91, 145, 163, 165, 189, 197, 223, 226-227, 255, 271, 282-284, 307, 336, 355,
380, 388, 485, 488, 493, 497, 551, 581, 610, 637, 639, 641, 820, 836, 944-951,
958, 962, 993.
(b) The central quadrilateral is a square if n =2, 3, 5, 20,22-23, 95, 97, 122-123,
127, 131, 140, 175, 216, 233, 253, 268, 280, 339, 347, 376, 381-382, 401-402,
408, 417-418, 426, 440-441, 454, 464-466, 546-550, 577, 631-632, 828, 852, 856,
858, 925.
(c) The central quadrilateral is cyclic if n =6, 51, 54, 67, 70, 74, 125, 130, 184-
185, 217, 287-288, 296, 389, 578, 686, 973-974.
(d) The central quadrilateral is equidiagonal, orthodiagonal if n =102, 124, 151.

Theorem A.13. For an equidiagonal orthodiagonal kite,
(excluding results for an equidiagonal orthodiagonal quadrilateral)
(excluding results for a kite)
(a) The central quadrilateral is an equidiagonal, orthodiagonal trapezoid if n =1,
8, 10, 40, 46-48, 63, 73, 84, 90-91, 102, 124, 145, 151, 165, 189, 197, 223, 226-
227, 255, 271, 282-284, 307, 336, 355, 380, 388, 485, 488, 493, 497, 551, 581,
610, 637, 639, 641, 820, 836, 944-951, 958, 962, 993.
(b) The central quadrilateral is a square if n =2, 3, 5, 20, 22-23, 95, 97, 122-123,
127, 131, 140, 175, 216, 233, 253, 268, 280, 339, 347, 376, 381-382, 401-402,
408, 417-418, 426, 440-441, 454, 464-466, 546-550, 577, 631-632, 828, 852, 856,
858, 925.
(c) The central quadrilateral is an isosceles trapezoid if n =6-7, 9, 11-18, 21, 31-
32, and many more values (almost all n).
(d) The central quadrilateral is a rectangle if n =224, 487, 914.
(e) The central quadrilateral is a line segment if n =109, 117, 663.

Theorem A.14. For an equidiagonal orthodiagonal trapezoid,
(excluding results for an equidiagonal orthodiagonal quadrilateral)
(excluding results for an orthogonal trapezoid)
(excluding results for an isosceles trapezoid)
(a) The central quadrilateral is an equiOrthoKite if n =102, 124, 151, 638, 640.
(b) The central quadrilateral is a kite if n =1, 7-17, 21, 31, 35-43, 44-45, 48,
55, 57-58, 60-63, 65, 69, 71-73, 75-83, 85, 86, 88-89, 94, 98, 103-106, and many
more.
(c) The central quadrilateral is bicentric, exbicentric, harmonic, and Hjelmslev if
n =6, 51, 54, 67, 70, 74, 125, 130, 184-185, 217, 287-288, 296, 389, 578, 973-
974.
(d) The central quadrilateral is a square if n =2, 3, 5, 20, 22-23, 95, 97, 122-123,
127, 140, 175, 216, 233, 253, 268, 280, 339, 347, 376, 381-382, 401-402, 408,
417-418, 426, 440-441, 464-466, 546-550, 577, 631-632, 828, 852, 856, 858.
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Theorem A.15. For a rectangle,
(excluding results for a harmonic quadrilateral)
(excluding results for a Hjelmslev quadrilateral
(excluding results for an isosceles trapezoid)
(excluding results for a parallelogram)
(a) The central quadrilateral is a rhombus for all triangle centers.

Theorem A.16. For a square,
(excluding results for an equidiagonal orthogonal trapezoid)
(excluding results for an equidiagonal orthogonal kite)
(excluding results for a cyclic orthodiagonal quadrilateral)
(excluding results for a bicentric trapezoid)
(excluding results for a rhombus)
(excluding results for a rectangle)
(excluding results for an exbicentric quadrilateral)
(a) The central quadrilateral is a square for all triangle centers.

Appendix B. Raw Data for Half Triangles

Theorem B.1. For a general quadrilateral,
no results were found.

Theorem B.2. For a cyclic quadrilateral,
(excluding results for a general quadrilateral)
(a) The central quadrilateral is a rectangle for n =1, 40, 165.
(b) The central quadrilateral is a line segment for n =155.
(c) EFGH is cyclic for n =2, 4, 5, 13-16, 20, 23, 26, 36, 74, 80, 98-100
and a large number of other n.
Missing: 6-12, 17-19, 21, 22, 24, 25, 27-29...

Theorem B.3. For an equalProdOpp quadrilateral,
(excluding results for a general quadrilateral)
(a) The central quadrilateral is equalProd for n =2, 3, 5, 15.

Theorem B.4. For an equalProdAdj quadrilateral,
(excluding results for a general quadrilateral)
no new results were found.

Theorem B.5. For an equidiagonal quadrilateral,
(excluding results for a general quadrilateral)
(a) The central quadrilateral is equidiagonal for n =2.

Theorem B.6. For an extangential quadrilateral,
(excluding results for general quadrilateral)
(a) The central quadrilateral is extangential for n =2, 3, 5.

Theorem B.7. For an orthodiagonal quadrilateral,
(excluding results for a general quadrilateral)
(a) The central quadrilateral is orthodiagonal for n =2-5, 20, 51, 140, 376, 381,
382, 546-550, 631-632.

Theorem B.8. For a Pythagorean quadrilateral,
(excluding results for a general quadrilateral)
(a) The central quadrilateral is Pythagorean for n =2.
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Theorem B.9. For a trapezoid,
(excluding results for a general quadrilateral)
(a) The central quadrilateral is a trapezoid for n =2-5, 20, 140, 376, 381, 382,
546-550, 631-632.

Theorem B.10. For a tangential quadrilateral,
(excluding results for a general quadrilateral)
(a) The central quadrilateral is tangential for n =2, 3, 5.

Theorem B.11. For an APquad,
(excluding results for an extangential quadrilateral)
(a) The central quadrilateral is an APquad for n =2.

Theorem B.12. For an equidiagonal orthodiagonal quadrilateral,
(excluding results for an equidiagonal quadrilateral)
(excluding results for an orthodiagonal quadrilateral)
(a) The central quadrilateral is an equidiagonal orthodiagonal quadrilateral for
n =2, 51, 373.
(b) The central quadrilateral is a line segment for n =642.
(c) The central quadrilateral is orthodiagonal for n =486.

Theorem B.13. For an orthodiagonal trapezoid,
(excluding results for a trapezoid)
(excluding results for an orthodiagonal quadrilateral)
(a) The central quadrilateral is orthodiagonal for n =2-5, 20, 140, 376, 381, 382,
546-550, 631-632.
(b) The central quadrilateral is orthodiagonal for n =51-53, 143.

Theorem B.14. For an isosceles trapezoid,
(excluding results for an equidiagonal quadrilateral)
(excluding results for a cyclic quadrilateral)
(excluding results for trapezoid)
(a) The central quadrilateral is a rectangle for n =1, 40, 165.
(b) The central quadrilateral appears to be an isosceles trapezoid for just about all
other n.

Theorem B.15. For a cyclic orthodiagonal quadrilateral,
(excluding results for a cyclic quadrilateral)
(excluding results for an orthodiagonal quadrilateral)
(a) The central quadrilateral is an isosceles trapezoid for n =26.
(b) The central quadrilateral is an isosceles trapezoid for n =53, 143, 373.
(c) The central quadrilateral is a line segment for n =63.
(d) The central quadrilateral is a trapezoid for n =577.

Theorem B.16. For a tangential trapezoid,
(excluding results for a tangential quadrilateral)
(excluding results for a trapezoid)
(a) The central quadrilateral is a tangential trapezoid for n =2, 3, 5.

Theorem B.17. For a tangential trapezoid, ?????
(excluding results for a general quadrilateral)
(a) The central quadrilateral is orthodiagonal for n =2-5, 20, 140, 376, 381, 382,
546-550, 631-632.
(b) The central quadrilateral is cyclic for n =2-5, 20, 140, 376, 381, 382,
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Theorem B.18. For a kite,
(excluding results for an orthodiagonal quadrilateral)
(excluding results for a tangential quadrilateral)
(excluding results for an extangential quadrilateral)
(excluding results for a Pythagorean quadrilateral)
(excluding results for an equalProdOpp quadrilateral)
(excluding results for an equalProdAdj quadrilateral)
(a) The central quadrilateral is a kite for all n.

Theorem B.19. For a bicentric quadrilateral,
(excluding results for a tangential quadrilateral)
(excluding results for cyclic quadrilateral)
(a) The central quadrilateral is bicentric for n =2, 4, 5, 20, 140, 376, 381, 382,
546-550, 631, 632.

Theorem B.20. For a harmonic quadrilateral,
(excluding results for a cyclic quadrilateral)
(excluding results for an equalProdOpp quadrilateral)
(a) The central quadrilateral is harmonic for n =2, 4, 5, 15, 16, 20, 23, 125, 140,
186, 265, 376, 381, 382, 546-550, 631, 632.

Theorem B.21. For a parallelogram,
(excluding results for Pythagorean)
(excluding results for extangential)
(a) The central quadrilateral is a rhombus for n =10, 639-642.
(b) The central quadrilateral appears to be a parallelogram for all other n.

Theorem B.22. For a Hjelmslev quadrilateral,
(excluding results for a cyclic quadrilateral)
(excluding results for a Pythagorean quadrilateral)
(a) The central quadrilateral is Hjelmslev for n =2, 4, 5, 20, 102, 109, 140, 376,
381, 382, 546-550, 631, 632, 930.
(b) The central quadrilateral is a parallelogram for n =53.
(c) The central quadrilateral is a line segment for n =97.

Theorem B.23. For an exbicentric quadrilateral,
(excluding results for an extangential quadrilateral)
(excluding results for a cyclic quadrilateral)
(a) The central quadrilateral is exBicentric for n =2, 4, 5, 20, 140, 376, 381, 382,
546-550, 631, 632.

Theorem B.24. For a bicentric trapezoid,
(excluding results for an isosceles quadrilateral)
(excluding results for an tangential quadrilateral)
(excluding results for a bicentric quadrilateral)
(a) The central quadrilateral is a bicentric trapezoid for n =2, 4, 5, 20, 140, 376,
381, 382, 546-550, 631, 632.
(b) The central quadrilateral appears to be an isosceles trapezoid for just about all
other n.

Theorem B.25. For a rhombus,
(excluding results for a parallelogram)
(excluding results for a tangential trapezoid)
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(excluding results for a kite)
(excluding results for an orthogonal trapezoid)
(a) The central quadrilateral is a rhombus for all n.
(b) The central quadrilateral is a square for n =354.

Theorem B.26. For an equidiagonal orthodiagonal kite,
(excluding results for an equidiagonal orthodiagonal quadrilateral)
(excluding results for a kite)
(a) The central quadrilateral is a bicentric exbicentric harmonic Hjelmslev quadri-
lateral for n =620.
(b) The central quadrilateral is an equidiagonal orthodiagonal kite for n =2, 51,
373, 638.
(c) The central quadrilateral is a line segment for n =615.

Theorem B.27. For an equidiagonal orthodiagonal trapezoid,
(excluding results for an equidiagonal orthodiagonal quadrilateral)
(excluding results for an orthogonal trapezoid)
(excluding results for an isosceles trapezoid)
(a) The central quadrilateral is a bicentric trapezoid for n =157.
(b) The central quadrilateral is cyclic for n =70, 565, 657, 770.
(c) The central quadrilateral is an equidiagonal orthodiagonal trapezoid for n =2,
4, 5, 20, 51-53, 68, 91, 96, 135, 137, 140, 143, 373, 376, 381, 382, 389, 486,
546-550, 568, 571, 631, 632, 847, 925.
(d) The central quadrilateral is a rectangle for n =1, 26, 40, 131, 165, 577, 578.
(e) The central quadrilateral is a trapezoid for n =70, 565, 657, 770.
(f) The central quadrilateral is a line segment for n =63, 136, 494, 642.
(g) The central quadrilateral appears to be an isosceles trapezoid for most other n.

Theorem B.28. For a rectangle,
(excluding results for a harmonic quadrilateral)
(excluding results for a Hjelmslev quadrilateral
(excluding results for an isosceles trapezoid)
(excluding results for a parallelogram)
(a) The central quadrilateral is a point for n =3, 97, 122, 123, 127, 131, 216,
268, 339, 408, 417, 418, 426, 440, 441, 454, 464-466, 577, 828, 852, 856.
(b) The central quadrilateral is a square for n =10, 117, 124, 197, 227, 355, 639-
642, 958, 993.
(c) The central quadrilateral appears to be rectangle for most other n.

Theorem B.29. For a square,
(excluding results for an equidiagonal orthogonal trapezoid, an equidiagonal orthog-
onal kite, a cyclic orthodiagonal quadrilateral, a bicentric trapezoid, an exbicentric
quadrilateral, a rhombus, and a rectangle)
(a) The central quadrilateral is a point for n =3, 11, 48, 49, 63, 69, 71-73, 77, 78,
97, 115, 116, 122-125, 127, 130, 137, 184, 185, 201, 212, 216, 217, 219, 222, 228,
244-246, 248, 255, 265, 268, 271, 283, 287, 293, 295, 296, 304-307, 326, 328,
332, 336-339, 343, 345, 348, 394, 408, 417, 418, 426, 440, 441, 464-466, 488,
499, 577, 591, 603, 606, 615, 640, 682, 748, 820, 828, 836, 852, 856, 865-868,
895, 974.
(b) The central quadrilateral appears to be a square all other n.
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