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SEVERAL PROPERTIES OF THE INSCRIBED CONIC SECTIONS  

AND A METHOD FOR PROOFS WITH COMPLEX NUMBERS 
 

Sava Grozdev, Veselin Nenkov 

 

Abstract: Several properties of conic sections are considered that are discovered by the 

software program GSP (The Geometer’s Sketchpad). Some of the assertions are 

generalizations of well-known facts about circles. A general method is elaborated which 

could be applied to similar problems.  

Key words: triangle, inscribe conic section, parabola, ellipse, hyperbola, complex 
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І. Several properties of the diameters of conic sections which are inscribed in 

triangles. We consider the following properties. 
 

 
Theorem 1. If the conic section   is inscribed in 1 2 3A A A  and is tangent to the line 

2 3A A  at the point 1B , while 1M  and 1N  are the midpoints of the segments 2 3A A  and 1 1A B , 

then: 

                                                           
1     This article is distributed under the terms of the Creative Commons Attribution License which 

permits any use, distribution, and reproduction in any medium, provided the original author(s) and 

the source are credited. 

Figure 1 
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1) the line 1 1M N  passes through the center of  , when   is ellipse or hyperbola (Fig. 

1, 2); 

2) the  line 1 1M N  is parallel to the axis of  , when   is parabola (Fig. 3). 
 

 

 
 

 

Figure 3 

Figure 2 
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Theorem 2. Let the conic section   be tangent at the points 1B  и 3B  to the lines 2 3A A  

and 1 2A A , which determine the triangle 1 2 3A A A . If the line through the mid-points of the 

segments 2 3A A  and 3 1A A , intersects the line 1 3B B  in point U , then 

1) the line 1A S  passes through U , when   is ellipse or hyperbola with center S , 

(Fig. 4, 5); 

2) the line 1AU  is parallel to the axis of  , when   is parabola (Fig. 6). 
 

 

 
 

Figure 5 

Figure 4 
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Theorem 3. Let the conic section   be tangent at the points 1B , 2B  and 3B  to the 

lines 2 3A A , 3 1A A  and 1 2A A , which determine the triangle 1 2 3A A A . If the medians through the 

vertices 1A , 2A  and 3A  intersect the lines 2 3B B , 3 1B B  and 1 2B B  in the points 1N , 2N  and 3N  

respectively, then  

1) the lines 1 1B N , 2 2B N  and 3 3B N  pass through the center of  , when   is ellipse or 

hyperbola (Fig. 7, 8); 

Figure 7 

Figure 6 
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2) the lines 1 1B N , 2 2B N  and 3 3B N  are parallel to the axis of  , when   is parabola 

(Fig. 9). 

 

 

 
 

ІІ. Two metric equalities which are determined by inscribed conic sections. The 

following metric relations are considered: 

Theorem 4. Given are triangle 1 2 2A A A  with area S  and conic section  , which is 

tangent to the lines 2 3A A , 3 1A A  and 1 2A A  at the points 1B , 2B  and 3B , respectively. If the 

areas of the triangles 2 3 1B B A , 3 1 2B B A , 1 2 3B B A  and 1 2 3B B B  are 1S , 2S , 3S  and  , 

respectively, then 

Figure 9 

Figure 8 
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1 2 32
S S S

S
  . 

 
Theorem 5. If 1 2 3 nA A A A   3n   is the polygon obtained by the intersection of 

arbitrary lines 1 2A A , 2 3A A , , 1n nA A  and 1nA A , which are tangent to a given conic section 

  at the points 1B , 2B , , 1nB   and nB , respectively, then  

 1 11 1 2 2

2 1 3 2 1 1

. . 1
nn n n n

n n n

A B A BA B A B

A B A B A B A B

 



  . 

 

 
 

III. A linear property of the centers of the conic sections that are inscribed in a 

quadrilateral. The line 0g  passing through the mid-points of the diagonals of an arbitrary 

quadrilateral ABCD , which is not a parallelogram, is called to be Gauss line for ABCD . The 

next proposal is connected with it: 

Theorem 6. The centers of all inscribed conic sections in an arbitrary quadrilateral 

ABCD , which is not a parallelogram, lie on Gauss line for ABCD  (Fig. 12). 

Figure 11 

Figure 10 
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The sequel is dedicated to a method with complex numbers by means of which the 

formulated proposals will be proved. The method could be useful in problem solving 

connected with inscribed conic sections.  

 

IV. Parametric equations of some curves in the complex plane. Let in the complex 

plane with respect to a coordinate system with center O  be given the unit circle   with 

equation 1u   and an arbitrary point Z  with affix z . If Z O  and arg z  , then only one 

point U  with affix u  exists on   with argu  . Consequently, we may write down for 

each point Z  in the complex plane, which is different from the coordinate origin O, that  

 1  z z u , 1u  . 

The equality  1  remains true for 0z  , i.e. Z O . Thus, each complex number z  

may be represented in the form  1 , and this means that each point in the complex plane has 

affix represented by  1 . From  1  we get 
22 2 2z z u zzu  . It follows that  

 2  
2z zu , 1u  . 

Using  1  and  2 , we will show how to present the points from some curves in 

relation with a parameter, which is changing on the unit circle  . 

 

IV.1. Equation of a line not passing through the coordinate origin. Each line l  in 

the complex plane has equation of the type 0 0A z A z C  , where C  is a real number. If the 

line l  does not pass through the coordinate origin O , then 0C  . Accounting for C C , the 

last equality may be written in the following way 0 0 1
A A

z z
C C

  . We take 0A

C
   in this 

equality thus obtaining that each line l , which does not pass through the coordinate origin, 

has equation of the type  

Figure 12 
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 3  : 1l z z   , 0  . 

Substituting  2  in  3  and taking 
2u

t



 , we conclude, that the points on the line l  

verify 

 4  
 
1

1
z

t



, 1t  . 

IV.2. Equation of circle. Since the circle is a set of points in the plane, which are at 

distance R  from a point  , then if the affix of   is  , we have z R   for each point 

Z  on the circle. It follows from the last equality that    2z z R    , and after 

simplification we get the equation  

 5  2zz z z R      . 

IV.3. Equation of conic section. Let O  be focus of a given conic section  , and d  

be directrice of   corresponding to O . A polar coordinate system is chosen in the following 

way: the pole coincides with focus O , while the polar axis is with the same direction of the 

ray that passes through O , perpendicularly to d  and directed to the line d . It is well-known 

that with respect to the introduced coordinate system   has the following polar equation 

 6  
1 cos

p

e






, 

where p  is the focal parameter of  , and e  is its eccentricity. 

If  ,   are the polar coordinates of point Z , accounting for  1  we obtain z u , 

cos
2

u u



  and 1u  . From the last equalities and  6  we get 

2

2

2

p
z

eu u e


 
. 

Substitute t u  in the last equality to deduce the equation of the conic section   

 7  
2

2

2

p
z

et t e


 
, 1t  . 

Note that in case of hyperbola the polar equation  6  describes only the branch, which 

lies in one and the same semi-plane with the focus O  with respect to d . Consequently the 

equation  7  concerns this branch of the hyperbola only. It will be proved in the sequel that 

both branches of the hyperbola are described by the equation  7 . 

Further, the fact that the point 0Z  from the curve   is obtained when the value of the 

parameter is 0t t , will be notified in the following way:  0 0Z t . 

 

IV.4. Equation of a tangent to a conic section. Under the above assumptions we will 

determine the equation of the tangent to   at the point 0Z  with affix 0z . Since the tangent is 

a line that does not pass through the focus O , it is described by the equations 
 

1

1
z

t



, 

1t   or 1z z   , 0   (they follow from  4  and  3 ). Substituting  7  in the last 

equation we obtain  

  22 2 2 0e p t t e p      . 
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The tangent has a unique common point with  , consequently the last equation has only one 

root 0t , which is 0

1

2
t

e p
 


. From here 0

2

e t

p



 . Thus, the equation of the tangent is 

  0

2

1

p
z

e t t


 
. Let t t  , 1  . For   we will use that 

  0 2

0 0 0

2 2

1 2

p p
z

e t t et t e
 

   
. From here 0

0

1et

t e






. Finally, the equation of the tangent 

at the point  0 0Z t  is 

 8  
0 0

2 p
z

et t t t e


  
, 1t  . 

V. Inscribed conic sections in triangle. A conic section   is inscribed in a triangle 

  if the lines that determine the triangle are tangent to  .  

Let the lines 1 , 2  and 3  be tangent to the conic section   with focus O  at the points 

 1 1B t ,  2 2B t  and  3 3B t , respectively. If   is a hyperbola, we will suppose temporary that 

1 , 2  and 3  are tangent to the branch of  , which contains the focus O . According to  8  

the equations of the tangents are the following 

2
:j

j j

p
z

et t t t e
 

  
. 

(From now on we suppose that the equalities 1 2 3 1t t t t     are going without saying 

and we will not mention them). If 2 3 1A   , 3 1 2A    and 1 2 3A   , we have that the 

affixes 1a , 2a  and 3a  of the points 1A , 2A  and 3A  are: 

 9  1

2 3 2 3

2 p
a

et t t t e


  
, 2

3 1 3 1

2 p
a

et t t t e


  
, 3

1 2 1 2

2 p
a

et t t t e


  
. 

Let k  be the circumcircle of 1 2 3A A A . If   is the center of k  and R  is its radius, 

then the equation of k  is expressed by  5 . Replacing  9  in  5  we obtain the following 

linear system of equations with respect to  ,   and 
22R  : 

 

 

 

2
221 2 1 2

2

1 2 1 2 1 2 1 21 2 1 2

2
222 3 2 3

2

2 3 2 3 2 3 2 32 3 2 3

2
223 1 3 1

2

3 1 3 1 3 1 3 13 1 3 1

4 22
,

4 22
,

4 22
.

p t t pt tp
R

et t t t e et t t t eet t t t e

p t t pt tp
R

et t t t e et t t t eet t t t e

p t t pt tp
R

et t t t e et t t t eet t t t e










   
       

   
       

   
       

 

From here we get the equalities: 

 10  

   

   

   
   

2 2

1 2 3 1 2 2 3 3 1 1 2 3

1 2 1 2 2 3 2 3 3 1 3 1

2 2

1 2 3 1 2 3 1 2 2 3 3 1 1 2 3

1 2 1 2 2 3 2 3 3 1 3 1

2 2
,

2 2
,

p e e t t t t t t t t t e t t t e

et t t t e et t t t e et t t t e

pt t t e t t t e t t t t t t t t t e e

et t t t e et t t t e et t t t e
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 11  
 

   

2 2

2 1 2 32

1 2 1 2 2 3 2 3 3 1 3 1

4 1p e t t t
R

et t t t e et t t t e et t t t e



 

        
. 

Let 1M , 2M  and 3M  be the feet of the perpendiculars from the focus O  of  , to the 

lines 1 , 2  and 3 , respectively. Consequently 
1 2 3OM A A , 

2 3 1OM A A  and 
3 1 2OM A A . 

From the condition of perpendicularity of vectors and the equalities  9  we obtain that the 

affixes 1m , 2m  and 3m  of the points 1M , 2M  and 3M , respectively are expressed by the 

equalities 

 12  j

j

p
m

e t



  1,2,3j  . 

 

V.1. Relations between the inscribed parabolas in a triangle and its circumcircle. 

Taking into account that a conic section is a parabola exactly when 1e  , it follows directly 

from  11  the following 

Theorem 7. The conic section   inscribed in the triangle   is a parabola iff the 

focus of   lies on the circumcircle k  of   (Fig. 13). 
 

 
 

With respect to the coordinate system under consideration the vertex of the parabola 

  has affix 
2

p
 (Fig. 13). Since the tangent 0s  at the vertex is perpendicular to the axis of the 

parabola, then its equation is of the form 

 13  0 :s z z p  . 

Replacing 1e   in  12 , we see that the numbers 1m , 2m  and 3m  satisfy  13 . The following 

theorem is true. 

Figure 13 
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Theorem 8. If the parabola   is inscribed in the triangle  , then the Simson line 0s  

of the focus of   with respect to   is tangent to   at its vertex (Fig. 13). 

 

V.2. Relations between the conic sections inscribed in a triangle and the pedal 

circles of their foci. Let P  be a point in the plane of the triangle  , which is not on its 

circumcircle and the lines which determine  . If 1P , 2P  and 3P  are the orthogonal projections 

of P  on the lines that determine  , then the circle passing through those points is called to be 

pedal circle of the point P . 

 
 

Figure 14 
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Let   be ellipse or hyperbola with focus O  and inscribed in 1 2 3A A A  (Fig. 14, 15, 

16). Let S  be the center and 0R  be the radius of the pedal circle 0k  of the focus O  with 

respect to 1 2 3A A A . From  5  and  12  we obtain the following equation 

 14  
2

0 2 2 2
:

1 1 1

pe pe p
k zz z z

e e e
  

  
. 

Note from  14  that the following equalities are satisfied for the affix s  of S  and the radius 

0R  of 0k  

 15  
2 1

pe
s

e



, 

 16  
0 2 1

p
R

e



. 

It is seen from  15  that the center S  of 0k  lies on the real axis of the coordinate 

system. Additionally, the system consisted of the equations  14  and  7  has only two 

solutions which are real and could be obtained when 1t   and 1t   . This shows that the 

pedal circle 0k  and   are tangent (because 1t   and 1t    are double roots of the system). 

The corresponding tangent points have affixes 
1

p
z

e
 


 and 

1

p
z

e
 


. They are the affixes 

of the common points of   and the real axis, i.e. of the vertices of   on the real axis. 

Consequently, S  is the center of   and the other focus F  of   is symmetric to O  with 

respect to S . This means that the points O  and F  are isogonally conjugated with respect to 

1 2 3A A A . 
 

Figure 15 
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Now, let   be hyperbola and  0 0Z t  be a point from its branch for which the equality 

 7  is satisfied. Then, from  15  we obtain that the point 0Z  , which is symmetric to  0 0Z t  

with respect to the center S  of  , has affix 
 

  

2

0

0 22 2
0 00 0

2 1 2

21 2

p et p
z

et t ee et t e


  

    
, where 

0
0

0 1

t e
t

et


  


. Since 0 1t  , the last equality shows that the point  0 0Z t   lies on the other 

branch of the hyperbola and satisfies  7  when 0t t . Thus, we establish that the equation 

 7  describes both branches of the hyperbola. This means that in the case of hyperbola it is 

not necessary to consider different situations depending on the position of the hyperbola 

under consideration.  

Accounting for the last conclusion and the results obtained before we reach the 

following  

Theorem 9. If a conic section   inscribed in a triangle   is ellipse or hyperbola, 

then its foci are isogonally conjugated with respect to  , and their common pedal circle is 

tangent to   at a point which lies on its focal axis (Fig. 14, 15, 16). 

 

VІ. Proofs of theorems 1-6. 

VІ.1. Proof of Theorem 1. Using the considerations for the affix of the point 1B  we 

have 1 2

1 1

2

2

p
b

et t e


 
, while the equalities  9  are satisfied for the affixes of the points 1A , 

2A  and 3A . The affixes of 1M  and 1N  are respectively 

 

  
1 2 1 3 1 2 32 3

1

1 2 1 2 3 1 3 1

2 2

2

p et t et t t t t ea a
m

et t t t e et t t t e

    
 

     
, 

Figure 16 



66 
Sava Grozdev, Veselin Nenkov 

 

 
  

2

1 2 3 1 2 31 1
1 2

1 1 2 3 2 3

2 2

2 2

p et et t t t t ea b
n

et t e et t t t e

    
 

    
. 

If   is ellipse or hyperbola with center S , it follows from the last two equalities and 

 15  that 

  

  
1 2 1 2 3 1 3 11 1

2
1 11 1 2 3 2 32

et t t t e et t t t en s n s

m s m set t e et t t t e

      
 

     
, 

which means that the points 1M , 1N  and S  are collinear. 

If   is parabola, then 1e   and 
  

    
1 2 1 3

1 1 1 12

1 2 31 1 1

p t t t t
n m n m

t t t

 
   

  
. This equality 

shows that the line 1 1M N  is parallel to the axis of the parabola. Thus, Theorem 1 is proved. 

VІ.2. Proof of Theorem 2. Under the assumed notations for the affixes of the points 

1B  and 3B  we have respectively 1 2

1 1

2

2

p
b

et t e


 
 and 3 2

3 3

2

2

p
b

et t e


 
, while the equalities 

 9  are satisfied for the points 1A , 2A  and 3A . Let 1M  and 2M  be the midpoints of 2 3A A  and 

3 1A A , respectively. We obtain for the equations of the lines 1 3B B  and 1 2M M  that 

     1 3 3 1 3 1 3 1 3 1: 2 2 2B B t t et et z et et z p t t       , 

     

 
1 2 3 1 2 1 2 3 1 2 1 2

2

1 2 3 3 1 2 2 3 3 1 3

: 1

2 2 .

M M t e et t t t e z et et t t t e z

p et t t t t t t t t t et

         

     
 

From those equations we find that the affix u  of the common point U  of 1 3B B  and 1 2M M  is 

expressed by the equality 

 17  
 

  

2

3 1 2 2 3 3 1 3 1

2

3 3 1 2 1 2

2 2 2

2

p et et t et t et t t t e
u

et t e et t t t e

     


    
. 

If   is ellipse or hyperbola with center S , it follows from  15  and  17  that  

  

  

2

3 3 1 2 1 21 1

2 3 2 3 3 1 3 1

2et t e et t t t ea s a s

u s et t t t e et t t t e u s

     
 

       
, 

which means that the points 1A , U  and S  are colinear. 

If   is parabola, when 1e   we obtain from  17  that 

  

   
1 3 2 3

1 12

1 2 31 1 1

p t t t t
u a u a

t t t

 
   

  
, 

which means that the line 1AU  is parallel to the axis of  . Thus, Theorem 2 is proved. 

VІ.3. Proof of Theorem 3. Under the assumed notations for the affixes of the points 

1B , 2B  and 3B  we have respectively 1 2

1 1

2

2

p
b

et t e


 
, 2 2

2 2

2

2

p
b

et t e


 
 and 

3 2

3 3

2

2

p
b

et t e


 
. The equalities  9  are satisfied for the affixes of the points 1A , 2A  and 3A , 



67 SEVERAL PROPERTIES OF THE INSCRIBED CONIC SECTIONS 
AND A METHOD FOR PROOFS WITH COMPLEX NUMBERS 

while the affixes of the midpoints 1M , 2M  and 3M  of 2 3A A , 3 1A A  and 1 2A A , respectively are 

expressed by the equalities 2 3
1

2

a a
m


 , 3 1

2
2

a a
m


  and 1 2

3
2

a a
m


 . 

Let   be ellipse or hyperbola and 2 3 1 1B B SB Q  . We find for the equations of the 

lines 2 3B B  and 1SB  that 

     2 3 2 3 2 3 2 3 2 3: 2 2 2B B t t et et z et et z p t t       , 

     2 2 2 2 2 2 2

1 1 1 1 1 1: 2 2 2 2 2 1SB e t et e z e t et e z pe t         
 

. 

From those equations we obtain that the affix 1q  of the point 1Q  satisfies the equality 

 
          

2

1 1 2 3 1 2 3

2 2 2 2

1 2 3 1 1 2 3 1 2 3 1 2 3 1 2 3

2

2 2 2 2

p et et t et t t t e
q

et t t et et t t e t t t e t t t t t t e e

    


           
. 

From here we get 

          

  

1 1 1 1

1 1 1 1

2 2 2 2

1 2 3 1 1 2 3 1 2 3 1 2 3 1 2 3

1 2 1 2 3 1 3 1

2 2 2 2
,

a m a m

a q a q

et t t et et t t e t t t e t t t t t t e e

et t t t e et t t t e

 
 

 

           


     

 

which means that the point 1Q  lies on the median 1 1A M . Consequently 1 1Q N  and the line 

1 1B N  passes through S . 

Now, let   be parabola and 1d  be the line passing through 1B , parallel to the axis of 

 . Since 1e  , the equations of the lines 1d  and 2 3B B  are the following 

 1

1

1

2 1
:

1

p t
d z z

t


 


,      2 3 2 3 2 3 2 3 2 3: 2 2 2B B t t t t z t t z p t t       . 

If 1 2 3 1d B B Q  , then 
 

   
1 2 3

1

1 2 3

2 1

1 1 1

p t t t
q

t t t

  


  
. It is easily seen from here that the 

equalities 1 1 1 1

1 1 1 1

1

2

a m a m

a q a q

 
 

 
 are satisfied. Consequently 1 1Q N  and 1 1B N  is parallel to 

the axis of  . Thus, Theorem 3 is proved. 

VІ.4. Proof of theorem 4. Denote the orientated areas of the triangles 2 3 1B B A , 

3 1 2B B A , 1 2 3B B A , 1 2 3A A A  and 1 2 3B B B  by 1S , 2S , 3S , S  and  , respectively. The orientated 

area of 1 2 3A A A  is determined in the following way 

   

   

1 1 2

1 2 2 3 3 1

2 2

1 2 1 2 2 3 2 3 3 1 3 1

3 3

1

1
4

1

a a
ip t t t t t ti

S a a
et t t t e et t t t e et t t t e

a a

  
 

        
. 

Analogously, we find 

   

   

2

1 2 2 3 3 1

2 2 2

1 1 2 2 3 3

2

2 2 2

ip t t t t t t

et t e et t e et t e


  
 

     
, 

 

   

32

2 3

1 2 2

2 2 3 3 2 3 2 32 2

ip t t
S

et t e et t e et t t t e


 

      
, 
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32

3 1

2 2 2

3 3 1 1 3 1 3 12 2

ip t t
S

et t e et t e et t t t e


 

      
, 

 

   

32

1 2

3 2 2

1 1 2 2 1 2 1 22 2

ip t t
S

et t e et t e et t t t e


 

      
. 

It follows easily from here that 2

1 2 34S S S S   . Consequently 1 2 32
S S S

S
  . Thus, 

Theorem 4 is proved. 

VІ.5. Proof of theorem 5. Consider a coordinate system as shown in Fig. 17. The 

following equalities are satisfied with respect to it 

2

2

2
j

j j

p
b

et t e


 
  1,2, ,j n , 

1

1 1

2

n n

p
a

et t t t e


  
, 

1 1

2
j

j j j j

p
a

et t t t e 


  

  2,3, ,j n . 

From the ratio 
k j k j

l jl j

A B a b

a bA B





for three points kA , lA  and jB  we obtain the following 

relations: 

11 1 1

2 1 22 1

.nt tA B a

t t aA B





, 1

1 11

.k k k k k

k k kk k

A B t t a

t t aA B



 





  2,3, , 1k n  , 1

1 11

.n n n n n

nn

A B t t a

t t aA B

 



. 

 

From we have  1 11 1 2 2

2 1 3 2 1 1

. . 1
nn n n n

n n n

A B A BA B A B

A B A B A B A B

 



  . Thus, Theorem 5 is proved. 

VІ.6. Proof of Theorem 6 and some consequences. We will use the notations in Fig. 

18. 
 

Figure 17 
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Let 1Q , 2Q , 3Q  and 4Q  be the tangent points of the conic section   with the lines 

AB , BC , CD  and DA  respectively, while the equalities 
2

2

2
j

j j

p
q

et t e


 
  1,2,3,4j   are 

satisfied for their affixes. Consequently, the affixes of the points A , B , C , D , U  and V  are 

expressed by the equalities 

4 1 4 1 1 2 1 2 2 3 2 3

3 4 3 4 1 3 1 3 2 4 2 4

2 2 2
, , ,

2 2 2
, , .

p p p
a b c

et t t t e et t t t e et t t t e

p p p
d u v

et t t t e et t t t e et t t t e

  
        

  
        

 

For the affixes of the points jM   3,2,1j  we have 

1
2

a c
m


 , 2

2

b d
m


 , 3

2

u v
m


  

If the conic section   is inscribed in ABCD  and if it is ellipse or hyperbola, then 

from the above equalities and  15  we obtain 

  

  
2 3 2 3 4 1 4 11 1

2 1 2 1 2 3 4 3 4 2

et t t t e et t t t em s m s

m s et t t t e et t t t e m s

      
 

       
, 

  

  
1 3 1 3 2 4 2 41 1

3 1 2 1 2 3 4 3 4 3

et t t t e et t t t em s m s

m s et t t t e et t t t e m s

      
 

       
. 

Consequently, the points 1M , 2M , 3M  and S  are co-linear. 

If   is parabola, inscribed in ABCD , then 1e   and we have the equalities 

  

    
1 3 2 4

1 2 1 2

1 2 3 41 1 1 1

t t t t p
m m m m

t t t t

 
   

   
, 

  

    
1 4 2 3

1 3 1 3

1 2 3 41 1 1 1

t t t t p
m m m m

t t t t

 
   

   
. 

Consequently, the points 1M , 2M  and 3M  lie on a line, which is parallel to the axis of 

 . Thus, Theorem 6 is proved. 

Figure 18 
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Taking into account that the parabola could be considered as a conic section with 

infinite center – the infinity point of  , the last result means that the center of the parabola   

is the infinity point of the line 0g . Each line has only one infinity point and we establish the 

following  

Corollary 1. Each quadrilateral without parallel sides has unique inscribed parabola 

(Fig. 17). 

Corollary 2. If a given quadrilateral is circumscribed or escribed of circle, then the 

center of the circle is on the Gauss line for the quadrilateral.  

It is well known that the line defined by a vertex of a quadrilateral and the center of 

gravity of the triangle formed by the other three vertices passes through a constant point G  of 

the quadrilateral which is called med-center of the quadrilateral. The affix of G  is expressed 

by the equality 
4

a b c d
g

  
   It is easy to see that the point G  is on the line 0g . 

Accounting for the cases when ABCD  is a parallelogram, we obtain the following  

Corollary 3. The med-center of an arbitrary quadrilateral ABCD  is the center of a 

conic section which is inscribed in ABCD . 
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