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1. An ellipse through 12 points and golden triangle

Theorem 1.1 ([1], [2]). Let ABC be a triangle, let points Ba, Ca be chosen on
BC, points Cb, Ab be chosen on CA, points Ac, Bc be chosen on AB, such that
BcCb, AcCa, AbBa parallel to BC, CA, AB respectively. Let A′ = AcCa ∩ AbBa

define B′, C ′ cycllically. Let A′′ = BCb∩CBc, B′′ = CAc∩ACa, C ′′ = ABa∩BAb.
Then three statements as follows are equivalent:
1. Points A′′ ≡ A′ and B′′ ≡ B′ and C ′′ ≡ C ′.
2. 12 points: Ba, Ca, Cb, Ab, Ac, Bc and midpoints of AB′, AC ′, BC ′, BA′, CA′,
CB′ lie on an ellipse.
3.
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2. Some variant of Golden triangle

Theorem 2.1 ([1]). Let ABC be a triangle, let points Ba, Ca be chosen on segment
BC, points Cb, Ab be chosen on segment CA, points Ac, Bc be chosen on segment
AB, such that:
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Where (0 < t < 2) . Let BCb ∩ CBc = A′ define B′, C ′ cycllically.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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Figure 1. Theorem 1.1

1. The Euler lines of two triangle ABC and A′B′C ′ are concides.
2. Let H,O be the circumcenter and orthocenter of ABC respectively and H ′, O′

be the circumcenter and orthocenter of A′B′C ′ respectively, then: HO′
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O′O
= OH′

H′O′ = φ =
√
5+1
2

and SABC
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Figure 2. Theorem 2.1

Theorem 2.2. The Golden triangle A′B′C ′ perspective to arbitrary Kiepert tri-
angle

Theorem 2.3 (Second Golden triangle). Let ABC be a triangle, let points Ba, Ca
be chosen on segment BC, points Cb, Ab be chosen on segment CA, points Ac, Bc

be chosen on segment AB, such that:
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Let BAb ∩ CAc = A′ define B′, C ′ cycllically.
1. The Euler lines of two triangle ABC and A′B′C ′ are concides.
2. Let O be the circumcenter of ABC respectively and H ′, O′ be the circumcenter
and orthocenter of A′B′C ′ respectively, then: OO′

O′H′ = t iff t = φ =
√
5+1
2

. In this
case SABC

SA′B′C′
= 5φ4
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Figure 3. Theorem 2.2

Figure 4. Theorem 2.3 and Theorem 2.4

Theorem 2.4 (Third Golden triangle). Let ABC be a triangle, let points Ba, Ca
be chosen on segment BC, points Cb, Ab be chosen on segment CA, points Ac, Bc

be chosen on segment AB, such that:
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Let BCb ∩ CBc = A′ define B′, C ′ cycllically.
1. The Euler lines of two triangle ABC and A′B′C ′ are concides.
2. Let O be the circumcenter of ABC respectively and H ′, O′ be the circumcenter
and orthocenter of A′B′C ′ respectively, then:O

′H′

H′O
= t iff t = φ =
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. In this
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Theorem 2.5 (Fourth Golden triangle). Let ABC be a triangle, let points Ba, Ca
be chosen on segment BC, points Cb, Ab be chosen on segment CA, points Ac, Bc

be chosen on segment AB, such that:
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Let BCb ∩ CBc = A′ define B′, C ′ cycllically.
1. The Euler lines of two triangle ABC and A′B′C ′ are concides.
2. Let O be the circumcenter of ABC respectively and H ′, O′ be the circumcenter
and orthocenter of A′B′C ′ respectively, then: H′O′

O′O
= t iff t = φ =

√
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2

. In this
case SABC

SA′B′C′
= 10− 3

φ

Figure 5. Theorem 2.5 and Theorem 2.6

Theorem 2.6 (Fiveth Golden triangle). Let ABC be a triangle, let points Ba, Ca
be chosen on line BC but not in segment BC; points Cb, Ab be chosen on line CA
but not in segment CA; points Ac, Bc be chosen on line AB but not in segment
AB, such that:
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Let BCb ∩ CBc = A′ define B′, C ′ cycllically.
1. The Euler lines of two triangle ABC and A′B′C ′ are concides.
2. Let H,O be the circumcenter and orthocenter of ABC respectively and O′ be the
circumcenter of A′B′C ′, then: OO′

O′H
= t iff t = φ =

√
5+1
2

. In this case SABC

SA′B′C′
= φ4
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Theorem 2.7 (Sixth Golden triangle). Let ABC be a triangle, let points Ba, Ca
be chosen on line BC but not in segment BC; points Cb, Ab be chosen on line CA
but not in segment CA; points Ac, Bc be chosen on line AB but not in segment
AB. such that:
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Let BAb ∩ CAc = A′ define B′, C ′ cycllically.
1. The Euler lines of two triangle ABC and A′B′C ′ are concides.
2. Let H,O be the circumcenter and orthocenter of ABC respectively and O′ be the
circumcenter of A′B′C ′, then: OO′
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= t iff t = φ =
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. In this case SABC
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Theorem 2.8 (Seventh Golden triangle). Let ABC be a triangle, let points Ba, Ca
be chosen on line BC but not in segment BC; points Cb, Ab be chosen on line CA



108 An Ellipse Through 12 Points and Golden Triangle

Figure 6. Theorem 2.7 and Theorem 2.8

but not in segment CA; points Ac, Bc be chosen on line AB but not in segment
AB, such that:
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Let BCb ∩ CBc = A′ define B′, C ′ cycllically.
1. The Euler lines of two triangle ABC and A′B′C ′ are concides.
2. Let H,O be the circumcenter and orthocenter of ABC respectively and O′ be the
circumcenter of A′B′C ′, then: O′O
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Figure 7. Theorem 2.9

Theorem 2.9 (Eighth Golden triangle). Let ABC be a triangle, let points Ba, Ca
be chosen on line BC but not in segment BC; points Cb, Ab be chosen on line CA
but not in segment CA; points Ac, Bc be chosen on line AB but not in segment
AB, such that:
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Let BAb ∩ CAc = A′ define B′, C ′ cycllically.
1. The Euler lines of two triangle ABC and A′B′C ′ are concides.



Dao Thanh Oai 109

2. Let H,O be the circumcenter and the orthocenter of ABC respectively; O′, H ′

be the circumcenter and the orthocenter of A′B′C ′ respectively, then: H′O
OO′ =

O′H
HO

iff t = φ =
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. In this case H′O
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