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1. INTRODUCTION

The following is an interesting theorem in a mathematical book [2]:

Theorem 1.1. Given a triangle ABC. Three squares ABCbCa, BCAcAb, CABaBc

are constructed on the three sides have the same outer orientation. Let the points
of intersection of AAb with CCb and BBa be N and P respectively; CCa with
BBa and AAc be Q,R respectively; BBc with AAc and CCb be S,M , respectively.
Prove that three lines MQ,NR,PS are concurrent at a point.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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[h]

Since this theorem, we refer to the following one:

Theorem 1.2. Given a triangle ABC. Three similar rectangles ABCbCa, BCAcAb,
CABaBc are constructed on the three sides have the same outer orientation. Let
the points of intersection of AAb with CCb and BBa be N and P , respectively;
CCa with BBa and AAc be Q,R, respectively; BBc with AAc and CCb be S,M ,
respectively. Prove that three lines MQ,NR,PS are concurrent at a point.

2. CONTENTS

The following are some new theorems.
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Theorem 2.1. Given a triangle ABC. Three similar rectangles ABCbCa, BCAcAb,
CABaBc are constructed on the three sides have the same outer orientation. Let
A1, A2; B1, B2; C1, C2 be points on AbAc, BcBa, CaCb such that AbA1 = A1A2 =
A2Ac; BcB1 = B1B2 = B2Ba; CaC1 = C1C2 = C2B, respectively. Let the points of
intersection of AA1 with CC2 and BB2 be N and P , respectively, CC1 with BB2

and AA2 be Q,R, respectively; BB1 with AA2 and CC2 be S,M , respectively.
Prove that three lines MQ, NR, PS are concurrent at a point.

Theorem 2.2. Given a triangle ABC. Three similar rectangles ABCbCa, BCAcAb,
CABaBc are constructed on the three sides have the same outer orientation. Let
A′, B′, C ′ be the midpoints of segments BaCa, CbAb, AcBc, respectively. Let the
points of intersection of AB′ with A′B be C ′′;A′C with AC ′ be B′′;BC ′ with B′C
be A′′. Prove that AA′′, BB′′, CC ′′ are concurrent at a point.
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Theorem 2.3. Given a triangle ABC. Three similar rectangles ABCbCa, BCAcAb,
CABaBc are constructed on the three sides have the same outer orientation. Let
A′, B′, C ′ be the in-centers of triangles ABaCa, BCbAb, CAcBc, respectively. Let
the points of intersection of AB′ with A′B be C ′′;A′C with AC ′ be B′′; BC ′ with
B′C be A”. Prove that AA′′, BB′′, CC ′′ are concurrent at a point.

Theorem 2.4. Given a triangle ABC. Three similar rectangles ABCbCa, BCAcAb,
CABaBc are constructed on the three sides have the same outer orientation. Let
A′, B′, C ′ be the ex-centers of triangles ABaCa, BCbAb, CAcBc, respectively.
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Let the points of intersection of AB′ with A′B be C ′; A′C with AC ′ be B′′;BC ′

with B′C be A′′. Prove that AA′′, BB′′, CC ′′ are concurrent at a point.

Theorem 2.5. Given a triangle ABC. Three similar rectangles ABCbCa, BCAcAb,
CABaBc are constructed on the three sides have the same outer orientation.
Ha, Hb, Hc are the feet of the altitudes dropped from A, B, C to BaCa, CbAb,
AcBc, respectively. Let A′, B′, C ′ be the points on AHa, BHb, CHc such that
AA′

AHa
= BB′

BHb
= CC′

CHc
= k, respectively. BA′ ∩ AB′ = C ′′; BC ′ ∩ CB′ = C ′′;

CA′ ∩ AC ′ = B′′. Prove that AA′′ , BB′′, CC ′′ are concurrent at a point.
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Theorem 2.6. Given a triangle ABC. Three similar rectangles ABCbCa, BCAcAb,
CABaBc are constructed on the three sides have the same outer orientation. Let
M, N, P be the midpoints of segments BaCa, CbAb, AcBc. Let A′, B′, C ′ be
the points on AM, BN, CP such that AA′

AM
= BB′

BN
= CC′

CP
= k, respectively.

BA′ ∩ AB′ = C ′′; BC ′ ∩ CB′ = C ′′; CA′ ∩ AC ′ = B′′. Prove that
AA′′ , BB′′, CC ′′ are concurrent at a point.

Theorem 2.7. Given a triangle ABC. Three similar rectangles ABCbCa, BCAcAb,
CABaBc are constructed on the three sides have the same outer orientation. Let
M, N, P be the circumcenters of triangles ABaCa, BCbAb, CAcBc, respectively.
Let A′, B′, C ′ be the points on AM, BN, CP such that AA′

AM
= BB′

BN
= CC′

CP
=

k, respectively. BA′ ∩ AB′ = C ′′; BC ′ ∩ CB′ = C ′′; CA′ ∩ AC ′ = B′′.
Prove that AA′′ , BB′′, CC ′′ are concurrent at a point.
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