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In this note we present a list of 342 new notable points of a triangle which lie on
the Euler line of the triangle. (see the Supplementary material) The presented
points are not available in the Kimberling’s ETC [11].
We encourage the reader to prove that the points lie on the Euler line and to find
their barycentric coordinates. We encourage the readers to publish the results in
our journal.
The problems are discovered by the computer program ”Discoverer”, created by
the authors.
Recall that the Euler line of a triangle is the line connecting the Centroid and the
Circumcenter of the triangle.
We use barycentric coordinates. See [1] - [19]. We denote by a = BC, b = CA
and c = AB the side lengths of a triangle ABC. The barycentric coordinates of
the form (f(a, b, c), f(b, c, a), f(c, a, b)) are shortened to [f(a, b, c)]
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Note that we can prove that a point P in barycentric coordinates lies on the Euler
line, if we use the barycentric equation of the Euler line L:

L : (−c2+b2)(b2+c2−a2)x+(−a2+c2)(c2+a2−b2)y+(−b2+a2)(a2+b2−c2)z = 0.

Below is the first problem of the enclosed list.

Problem 1. Prove that the Center of the Tangential Circle of the Medial Triangle
lies on the Euler line. Find the barycentric coordinates of this point.

Figure 1 illustrates Problem 1. In figure 1,

• G is the Centroid,
• O is the Circumcenter,
• GO is the Euler line,
• MaMbMc is the Medial triangle,
• P is the center of Tangential circle, and
• Q is the complement of point P , that is, Q is the Center of tangential
circle of the Medial triangle.

Figure 1.

Solution. We will use the construction of a complement of a point in a triangle.
Recall that a complement of a point is the homothetic image of the point under the
homothety with center the centroid of the triangle and ratio −1

2
. If a point P has

barycentric coordinates (u, v, w), then its complement has barycentric coordinates
(v + w,w + u, u+ v).
Given triangle ABC. Denote by P the Center of the Tangential circle (this is point
X(26) in [11]), and by Q its complement, that is, the Center of the Tangential
circle of the Medial triangle. Since point P lies on the Euler line (see e.g. [12]),
point Q also lies on the Euler line. The barycentric coordinates of these points
are as follows:

P =
[
a2(a8 − 2a6(b2 + c2)− (b2 − c2)2(b4 + c4) + 2a2(b6 + c6))

]
,

Q =
[
u = b2

(
b8 − 2b6(c2 + a2)− (c2 − a2)2(c4 + a4) + 2b2(c6 + a6)

)]
+c2

(
c8 − 2c6(a2 + b2)− (a2 − b2)2(a4 + b4) + 2c2(a6 + b6)

)
].

Below we give two theorems about the new point.

Theorem 1. The Center of the Tangential circle of the Medial triangle is the
Center of the homothety of the Half-Median Triangle and the Triangle of the Cir-
cumcenters of the Pedal Corner Triangles of the Center of the Tangential Circle.
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Figure 2.

Figure 2 illustrates Theorem 1. In figure 2,

• G is the Centroid,
• MaMbMc is the Half-median triangle,
• P is the Center of the Tangential circle,
• PaPbPc is the Pedal triangle of P ,
• Ta is the Circumcenter of triangle APbPc,
• Tb is the Circumcenter of triangle BPcPa,
• Tc is the Circumcenter of triangle CPaPb,
• TaTbTc is the Triangle of the Circumcenters of the Pedal Corner Triangles
of P , and

• Q is the Center of the Tangential circle of the Medial triangle.

Then triangles MaMbMc and TaTbTc are homothetic and point Q is the center
of the homothety.
Problem 1a. Find the ratio of the homothety in the above theorem.

Theorem 2. The Center of the Tangential circle of the Medial triangle is the
Homothetic Center of the Triangle ABC and the Triangle of the Orthocenters of
the Antipedal Corner Triangles of the Center of the Tangential Circle.

Figure 3.

Figure 3 illustrates Theorem 2. In figure 3,
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• P is the Center of the Tangential Circle,
• PaPbPc is the Antipedal triangle of P ,
• Ha is the Orthocenter of triangle PaBC,
• Hb is the Orthocenter of triangle PbCA,
• Hc is the Orthocenter of triangle PcAB,
• HaHbHc is the Triangle of the Orthocenters of the Antipedal Corner Tri-
angles of P , and

• Q is the Center of the Tangential circle of the Medial triangle.

Then triangles ABC and HaHbHc are homothetic and point Q is the center of
the homothety.
Problem 1b. Find the ratio of the homothety in the above theorem.

Supplementary Material

The enclosed supplementary material contains problems related to the topic.
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